Search Results

Now showing 1 - 3 of 3
  • Item
    High-spectral-resolution terahertz imaging with a quantum-cascade laser
    (Washington, DC : Optical Society of America, 2016) Hagelschuer, Till; Rothbart, Nick; Richter, Heiko; Wienold, Martin; Schrottke, Lutz; Grahn, Holger T.; Hübers, Heinz-Wilhelm
    We report on a high-spectral-resolution terahertz imaging system operating with a multi-mode quantum-cascade laser (QCL), a fast scanning mirror, and a sensitive Ge:Ga detector. By tuning the frequency of the QCL, several spectra can be recorded in 1.5 s during the scan through a gas cell filled with methanol (CH3OH). These experiments yield information about the local absorption and the linewidth. Measurements with a faster frame rate of up to 3 Hz allow for the dynamic observation of CH3OH gas leaking from a terahertz-transparent tube into the evacuated cell. In addition to the relative absorption, the local pressure is mapped by exploiting the effect of pressure broadening.
  • Item
    Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser
    (Washington, DC : Optical Society of America, 2017) Hagelschuer, Till; Wienold, Martin; Richter, Heiko; Schrottke, Lutz; Grahn, Holger T.; Hübers, Heinz-Wilhelm
    We report on real-time gas sensing with a terahertz quantum-cascade laser (QCL). The method is solely based on the modulation of the external cavity length, exploiting the intermediate optical feedback regime. While the QCL is operated in continuous-wave mode, optical feedback results in a change of the QCL frequency as well as its terminal voltage. The first effect is exploited to tune the lasing frequency across a molecular absorption line. The second effect is used for the detection of the self-mixing signal. This allows for fast measurement times on the order of 10 ms per spectrum and for real-time measurements of gas concentrations with a rate of 100 Hz. This technique is demonstrated with a mixture of D2O and CH3OD in an absorption cell.
  • Item
    Terahertz quantum-cascade lasers as high-power and wideband, gapless sources for spectroscopy
    (Washington, DC : Optical Society of America, 2017) Röben, Benjamin; Lü, Xiang; Hempel, Martin; Biermann, Klaus; Schrottke, Lutz; Grahn, Holger T.
    Terahertz (THz) quantum-cascade lasers (QCLs) are powerful radiation sources for high-resolution and high-sensitivity spectroscopy with a discrete spectrum between 2 and 5 THz as well as a continuous coverage of several GHz. However, for many applications, a radiation source with a continuous coverage of a substantially larger frequency range is required. We employed a multi-mode THz QCL operated with a fast ramped injection current, which leads to a collective tuning of equally-spaced Fabry-Pérot laser modes exceeding their separation. A continuous coverage over 72 GHz at about 4.7 THz was achieved. We demonstrate that the QCL is superior to conventional sources used in Fourier transform infrared spectroscopy in terms of the signal-to-noise ratio as well as the dynamic range by one to two orders of magnitude. Our results pave the way for versatile THz spectroscopic systems with unprecedented resolution and sensitivity across a wide frequency range.