Search Results

Now showing 1 - 4 of 4
  • Item
    Electron beam induced dehydrogenation of MgH2 studied by VEELS
    (Cham : Springer International Publishing AG, 2016) Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd
    Nanosized or nanoconfined hydrides are promising materials for solid-state hydrogen storage. Most of these hydrides, however, degrade fast during the structural characterization utilizing transmission electron microscopy (TEM) upon the irradiation with the imaging electron beam due to radiolysis. We use ball-milled MgH2 as a reference material for in-situ TEM experiments under low-dose conditions to study and quantitatively understand the electron beam-induced dehydrogenation. For this, valence electron energy loss spectroscopy (VEELS) measurements are conducted in a monochromated FEI Titan3 80–300 microscope. From observing the plasmonic absorptions it is found that MgH2 successively converts into Mg upon electron irradiation. The temporal evolution of the spectra is analyzed quantitatively to determine the thickness-dependent, characteristic electron doses for electron energies of both 80 and 300 keV. The measured electron doses can be quantitatively explained by the inelastic scattering of the incident high-energy electrons by the MgH2 plasmon. The obtained insights are also relevant for the TEM characterization of other hydrides.
  • Item
    Bidirectional quantitative force gradient microscopy
    (Milton Park : Taylor & Francis, 2015) Reiche, Christopher F.; Vock, Silvia; Neu, Volker; Schultz, Ludwig; Büchner, Bernd; Mühl, Thomas
    Dynamic operation modes of scanning force microscopy based on probe resonance frequency detection are very successful methods to study force-related properties of surfaces with high spatial resolution. There are well-recognized approaches to measure vertical force components as well as setups sensitive to lateral force components. Here, we report on a concept of bidirectional force gradient microscopy that enables a direct, fast, and quantitative real space mapping of force component derivatives in both the perpendicular and a lateral direction. It relies solely on multiple-mode flexural cantilever oscillations related to vertical probe excitation and vertical deflection sensing. Exploring this concept we present a cantilever-based sensor setup and corresponding quantitative measurements employing magnetostatic interactions with emphasis on the calculation of mode-dependent spring constants that are the foundation of quantitative force gradient studies.
  • Item
    Wide-range strain tunability provided by epitaxial LaAl1−xScxO3 template films
    (Milton Park : Taylor & Francis, 2010) Herklotz, Andreas; Biegalski, Michael D.; Kim, Hyun-Sik; Schultz, Ludwig; Dörr, Kathrin; Christen, Hans M.
    The dielectric diamagnetic LaAl1− xScxO3 (LASO) (x=0–1) is proposed for adjusting of the biaxial in-plane lattice parameter of oxide substrates in the wide range from 3.79 to 4.05 Å (6.5%). This range includes the pseudocubic lattice parameters of most of the currently investigated complex oxides. The in-plane lattice parameter of strain-relaxed LASO films depends linearly on the composition, and these films grow with a smooth surface. On several different LASO-buffered substrates, ferromagnetic La0.7Sr0.3MnO3 (LSMO) films have been grown in predetermined strain states. A series of 30 nm thick LSMO films on LASO-buffered LaSrAlO4(001) demonstrates that continuously controlled coherent strains in a wide range, in this case from − 1 to +0.6%, can be obtained for the functional oxide films grown on LASO.
  • Item
    Micromagnetic investigation of domain and domain wall evolution through the spin-reorientation transition of an epitaxial NdCo5 film
    ([London] : IOP, 2017-3-1) Seifert, Marietta; Schultz, Ludwig; Schäfer, Rudolf; Hankemeier, Sebastian; Frömter, Robert; Oepen, Hans Peter; Neu, Volker
    The domain pattern and the domain wall microstructure throughout the spin-reorientation transition of an epitaxial NdCo5 thin film are investigated by micromagnetic simulations. The temperature-dependent anisotropy constants K1 and K2, which define the anisotropy energy term in the model, are chosen to reflect the easy axis—easy cone—easy plane spin-reorientation transition observed in epitaxial NdCo5 thin films. Starting at the high-temperature easy c-axis regime, the anisotropy constants are changed systematically corresponding to a lowering of the temperature of the system. The character of the domain walls and their profiles are analysed. The calculated domain configurations are compared to the experimentally observed temperature-dependent domain structure of an in-plane textured NdCo5 thin film.