Search Results

Now showing 1 - 2 of 2
  • Item
    Destabilization of super-rotating Taylor-Couette flows by current-free helical magnetic fields
    (London : Cambridge Univ. Press, 2021) Rüdiger, G.; Schultz, M.; Hollerbach, R.
    In an earlier paper we showed that the combination of azimuthal magnetic fields and super-rotation in Taylor–Couette flows of conducting fluids can be unstable against non-axisymmetric perturbations if the magnetic Prandtl number of the fluid is Pm≠1. Here we demonstrate that the addition of a weak axial field component allows axisymmetric perturbation patterns for Pm of order unity depending on the boundary conditions. The axisymmetric modes only occur for magnetic Mach numbers (of the azimuthal field) of order unity, while higher values are necessary for the non-axisymmetric modes. The typical growth time of the instability and the characteristic time scale of the axial migration of the axisymmetric mode are long compared with the rotation period, but short compared with the magnetic diffusion time. The modes travel in the positive or negative z direction along the rotation axis depending on the sign of BϕBz. We also demonstrate that the azimuthal components of flow and field perturbations travel in phase if |Bϕ|≫|Bz|, independent of the form of the rotation law. Within a short-wave approximation for thin gaps it is also shown (in an appendix) that for ideal fluids the considered helical magnetorotational instability only exists for rotation laws with negative shear.
  • Item
    The stratorotational instability of Taylor-Couette flows with moderate Reynolds numbers
    (London [u.a.] : Taylor and Francis, 2017) Rüdiger, G.; Seelig, T.; Schultz, M.; Gellert, M.; Egbers, C.; Harlander, U.
    In view of new experimental data the instability against adiabatic nonaxisymmetric perturbations of a Taylor-Couette flow with an axial density stratification is considered in dependence of the Reynolds number (Re) of rotation and the Brunt-Väisälä number (Rn) of the stratification. The flows at and beyond the Rayleigh limit become unstable between a lower and an upper Reynolds number (for fixed Rn). The rotation can thus be too slow or too fast for the stratorotational instability. The upper Reynolds number above which the instability decays, has its maximum value for the potential flow (driven by cylinders rotating according to the Rayleigh limit) and decreases strongly for flatter rotation profiles finally leaving only isolated islands of instability in the (Rn/Re) map. The maximal possible rotation ratio μmax only slightly exceeds the shear value of the quasi-uniform flow with Uφ≃const. Along and between the lines of neutral stability the wave numbers of the instability patterns for all rotation laws beyond the Rayleigh limit are mainly determined by the Froude number Fr which is defined by the ratio between Re and Rn. The cells are highly prolate for Fr > 1 so that measurements for too high Reynolds numbers become difficult for axially bounded containers. The instability patterns migrate azimuthally slightly faster than the outer cylinder rotates.