Search Results

Now showing 1 - 7 of 7
  • Item
    Azadiphosphaindane-1,3-diyls: A Class of Resonance-Stabilized Biradicals
    (Weinheim : Wiley-VCH, 2021) Bresien, Jonas; Michalik, Dirk; Schulz, Axel; Villinger, Alexander; Zander, Edgar
    Conversion of 1,2-bis(dichlorophosphino)benzene with sterically demanding primary amines led to the formation of 1,3-dichloro-2-aza-1,3-diphosphaindanes of the type C6H4(μ-PCl)2N-R. Reduction yielded the corresponding 2-aza-1,3-diphosphaindane-1,3-diyls (1), which can be described as phosphorus-centered singlet biradical(oid)s. Their stability depends on the size of the substituent R: While derivatives with R=Dmp (2,6-dimethylphenyl) or Ter (2,6-dimesitylphenyl) underwent oligomerization, the derivative with very bulky R=tBuBhp (2,6-bis(benzhydryl)-4-tert-butylphenyl) was stable with respect to oligomerization in its monomeric form. Oligomerization involved activation of the fused benzene ring by a second equivalent of the monomeric biradical and can be regarded as formal [2+2] (poly)addition reaction. Calculations indicate that the biradical character in 1 is comparable with literature-known P-centered biradicals. Ring-current calculations show aromaticity within the entire ring system of 1. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    On New Staudinger Type Reactions of Phosphorus Centered Biradicaloids, [P(μ-NR)]2 (R = Ter, Hyp), with Ionic and Covalent Azides
    (Weinheim : Wiley-VCH, 2020) Schulz, Axel; Hinz, Alexander; Rölke, Anne; Villinger, Alexander; Wustrack, Ronald
    Phosphorus centered biradicaloids of the type [P(μ-NTer)]2 [R = Ter = terphenyl = 2,6-bis(2,4,6-trimethylphenyl)phenyl, Hyp = tris(trimethylsilyl)silyl] were treated with covalent (R-N3) and ionic azides (AgN3 and Hg(N3)2). While the reaction with the ionic azides led exclusively to the formation of diazides, [N3P(μ-NTer)]2, triaza-diphospha-pentadienes, RN=P–N(R')–P=NR, were observed in the reaction with covalent azides featuring a Staudinger type reaction followed by PN bond rearrangement reactions. This new Staudinger type mechanism as well as the structure, bonding and thermodynamics along different reaction paths are discussed based on DFT computations.
  • Item
    Pseudohalogen Chemistry in Ionic Liquids with Non-innocent Cations and Anions
    (Weinheim : Wiley-VCH-Verl., 2020) Arlt, Sören; Bläsing, Kevin; Harloff, Jörg; Laatz, Karoline Charlotte; Michalik, Dirk; Nier, Simon; Schulz, Axel; Stoer, Philip; Stoffers, Alrik; Villinger, Alexander
    Within the second funding period of the SPP 1708 “Material Synthesis near Room Temperature”,which started in 2017, we were able to synthesize novel anionic species utilizing Ionic Liquids (ILs) both, as reaction media and reactant. ILs, bearing the decomposable and non-innocent methyl carbonate anion [CO3Me]−, served as starting material and enabled facile access to pseudohalide salts by reaction with Me3Si−X (X=CN, N3, OCN, SCN). Starting with the synthesized Room temperature Ionic Liquid (RT-IL) [nBu3MeN][B(OMe)3(CN)], we were able to crystallize the double salt [nBu3MeN]2[B(OMe)3(CN)](CN). Furthermore, we studied the reaction of [WCC]SCN and [WCC]CN (WCC=weakly coordinating cation) with their corresponding protic acids HX (X=SCN, CN), which resulted in formation of [H(NCS)2]− and the temperature labile solvate anions [CN(HCN)n]− (n=2, 3). In addition, the highly labile anionic HCN solvates were obtained from [PPN]X ([PPN]=μ-nitridobis(triphenylphosphonium), X=N3, OCN, SCN and OCP) and HCN. Crystals of [PPN][X(HCN)3] (X=N3, OCN) and [PPN][SCN(HCN)2] were obtained when the crystallization was carried out at low temperatures. Interestingly, reaction of [PPN]OCP with HCN was noticed, which led to the formation of [P(CN)2]−, crystallizing as HCN disolvate [PPN][P(CN⋅HCN)2]. Furthermore, we were able to isolate the novel cyanido(halido) silicate dianions of the type [SiCl0.78(CN)5.22]2− and [SiF(CN)5]2− and the hexa-substituted [Si(CN)6]2− by temperature controlled halide/cyanide exchange reactions. By facile neutralization reactions with the non-innocent cation of [Et3HN]2[Si(CN)6] with MOH (M=Li, K), Li2[Si(CN)6] ⋅ 2 H2O and K2[Si(CN)6] were obtained, which form three dimensional coordination polymers. From salt metathesis processes of M2[Si(CN)6] with different imidazolium bromides, we were able to isolate new imidazolium salts and the ionic liquid [BMIm]2[Si(CN)6]. When reacting [Mes(nBu)Im]2[Si(CN)6] with an excess of the strong Lewis acid B(C6F5)3, the voluminous adduct anion {Si[CN⋅B(C6F5)3]6}2− was obtained. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Cycloaddition of Alkenes and Alkynes to the P-centered Singlet Biradical [P(μ-NTer)]2
    (Weinheim : Wiley-VCH, 2020) Chojetzki, Lukas; Schulz, Axel; Villinger, Alexander; Wustrack, Ronald
    The reaction of biradical [P(μ-NTer)]2 (1, Ter = 2,6-bis(2,4,6-trimethylphenyl)phenyl) towards different alkenes (R = 2,3-dimethyl–butadiene, 2,5-dimethyl-2,4-hexadiene, 1,7-octadiene, 1,4-cyclohexadiene) and alkynes (R = 1,4-diphenyl-1,3-butadiyne) was studied experimentally. Although these olefins can react in different ways, only [2+2] cycloaddition products (1R) were observed. The reaction with 2,3-dimethylbutadiene also led to the [2+2] product (1dmb). Thermal treatment of 1dmb above 140 °C resulted in the recovery of biradical 1 upon homolytic bond cleavage of the two P–C bonds and the release of 2,3-dimethylbutadiene. In contrast to this reaction, all other [2+2] additions products (1R, R = 1,7-octadiene, 1,4-cyclohexadiene, 1,4-diphenyl-1,3-butadiyne) began to decompose at temperatures between 200 °C and 300 °C. Only unidentified products were obtained but no temperature-controlled equilibrium reactions were observed. Computations were carried out to shed light into the formal [2+2] as well as the possible [4+2] addition reaction.
  • Item
    Salts of HCN-Cyanide Aggregates : [CN(HCN)2]− and [CN(HCN)3]−
    (Weinheim : Wiley-VCH, 2020) Bläsing, Kevin; Harloff, Jörg; Schulz, Axel; Stoffers, Alrik; Stoer, Philip; Villinger, Alexander
    Although pure hydrogen cyanide can spontaneously polymerize or even explode, when initiated by small amounts of bases (e.g. CN−), the reaction of liquid HCN with [WCC]CN (WCC=weakly coordinating cation=Ph4P, Ph3PNPPh3=PNP) was investigated. Depending on the cation, it was possible to extract salts containing the formal dihydrogen tricyanide [CN(HCN)2]− and trihydrogen tetracyanide ions [CN(HCN)3]− from liquid HCN when a fast crystallization was carried out at low temperatures. X-ray structure elucidation revealed hydrogen-bridged linear [CN(HCN)2]− and Y-shaped [CN(HCN)3]− molecular ions in the crystal. Both anions can be considered members of highly labile cyanide-HCN solvates of the type [CN(HCN)n]− (n=1, 2, 3 …) as well as formal polypseudohalide ions. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Trimethylsilyl Pseudohalide Adducts of GaCl3 and B(C6F5)3
    (Weinheim : Wiley-VCH, 2021) Bläsing, Kevin; Bresien, Jonas; Maurer, Steffen; Schulz, Axel; Villinger, Alexander
    Me3Si−X (X=CN, N3, OCN, and SCN) was treated with the Lewis acids GaCl3 and B(C6F5)3 in toluene yielding the desired adducts Me3Si−X→GaCl3 and Me3Si−X→B(C6F5)3. All synthesized adducts were isolated and completely characterized including single crystal structure elucidations. The different structures, thermodynamics of formation and charge transfer effects are discussed on the basis of experimental and theoretical data.
  • Item
    Hexacyanidosilicates with Functionalized Imidazolium Counterions
    (Weinheim : Wiley-VCH, 2020) Harloff, Jörg; Laatz, Karoline Charlotte; Lerch, Swantje; Schulz, Axel; Stoer, Philip; Strassner, Thomas; Villinger, Alexander
    Functionalized imidazolium cations were combined with the hexacyanidosilicate anion, [Si(CN)6]2–, by salt metathesis reactions with K2[Si(CN)6], yielding novel ionic compounds of the general formula [R–Ph(nBu)Im]2[Si(CN)6] {R = 2-Me (1), 4-Me (2), 2,4,6-Me = Mes (3), 2-MeO (4), 2,4-F (5), 4-Br (6); Im = imidazolium}. All synthesized imidazolium hexacyanidosilicates decompose upon thermal treatment above 95 °C (96 – 164 °C). Furthermore, the hexa-borane-adduct [Mes(nBu)Im]2{Si[(CN)B(C6F5)3]6}·6CH2Cl2 (7), which is thermally stable up to 215 °C, was obtained from the reaction of 3 with Lewis acidic B(C6F5)3. In CH3CN solution, decomposition of the hexaadduct to the Lewis-acid-base adduct CH3CN–B(C6F5)3 and [(C6F5)3B·(µ-CN)·B(C6F5)3]– was observed. All synthesized compounds were isolated in good yields and were completely characterized including single crystal structure elucidations. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.