Search Results

Now showing 1 - 2 of 2
  • Item
    Pseudohalogen Chemistry in Ionic Liquids with Non-innocent Cations and Anions
    (Weinheim : Wiley-VCH-Verl., 2020) Arlt, Sören; Bläsing, Kevin; Harloff, Jörg; Laatz, Karoline Charlotte; Michalik, Dirk; Nier, Simon; Schulz, Axel; Stoer, Philip; Stoffers, Alrik; Villinger, Alexander
    Within the second funding period of the SPP 1708 “Material Synthesis near Room Temperature”,which started in 2017, we were able to synthesize novel anionic species utilizing Ionic Liquids (ILs) both, as reaction media and reactant. ILs, bearing the decomposable and non-innocent methyl carbonate anion [CO3Me]−, served as starting material and enabled facile access to pseudohalide salts by reaction with Me3Si−X (X=CN, N3, OCN, SCN). Starting with the synthesized Room temperature Ionic Liquid (RT-IL) [nBu3MeN][B(OMe)3(CN)], we were able to crystallize the double salt [nBu3MeN]2[B(OMe)3(CN)](CN). Furthermore, we studied the reaction of [WCC]SCN and [WCC]CN (WCC=weakly coordinating cation) with their corresponding protic acids HX (X=SCN, CN), which resulted in formation of [H(NCS)2]− and the temperature labile solvate anions [CN(HCN)n]− (n=2, 3). In addition, the highly labile anionic HCN solvates were obtained from [PPN]X ([PPN]=μ-nitridobis(triphenylphosphonium), X=N3, OCN, SCN and OCP) and HCN. Crystals of [PPN][X(HCN)3] (X=N3, OCN) and [PPN][SCN(HCN)2] were obtained when the crystallization was carried out at low temperatures. Interestingly, reaction of [PPN]OCP with HCN was noticed, which led to the formation of [P(CN)2]−, crystallizing as HCN disolvate [PPN][P(CN⋅HCN)2]. Furthermore, we were able to isolate the novel cyanido(halido) silicate dianions of the type [SiCl0.78(CN)5.22]2− and [SiF(CN)5]2− and the hexa-substituted [Si(CN)6]2− by temperature controlled halide/cyanide exchange reactions. By facile neutralization reactions with the non-innocent cation of [Et3HN]2[Si(CN)6] with MOH (M=Li, K), Li2[Si(CN)6] ⋅ 2 H2O and K2[Si(CN)6] were obtained, which form three dimensional coordination polymers. From salt metathesis processes of M2[Si(CN)6] with different imidazolium bromides, we were able to isolate new imidazolium salts and the ionic liquid [BMIm]2[Si(CN)6]. When reacting [Mes(nBu)Im]2[Si(CN)6] with an excess of the strong Lewis acid B(C6F5)3, the voluminous adduct anion {Si[CN⋅B(C6F5)3]6}2− was obtained. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Salts of HCN-Cyanide Aggregates : [CN(HCN)2]− and [CN(HCN)3]−
    (Weinheim : Wiley-VCH, 2020) Bläsing, Kevin; Harloff, Jörg; Schulz, Axel; Stoffers, Alrik; Stoer, Philip; Villinger, Alexander
    Although pure hydrogen cyanide can spontaneously polymerize or even explode, when initiated by small amounts of bases (e.g. CN−), the reaction of liquid HCN with [WCC]CN (WCC=weakly coordinating cation=Ph4P, Ph3PNPPh3=PNP) was investigated. Depending on the cation, it was possible to extract salts containing the formal dihydrogen tricyanide [CN(HCN)2]− and trihydrogen tetracyanide ions [CN(HCN)3]− from liquid HCN when a fast crystallization was carried out at low temperatures. X-ray structure elucidation revealed hydrogen-bridged linear [CN(HCN)2]− and Y-shaped [CN(HCN)3]− molecular ions in the crystal. Both anions can be considered members of highly labile cyanide-HCN solvates of the type [CN(HCN)n]− (n=1, 2, 3 …) as well as formal polypseudohalide ions. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.