Search Results

Now showing 1 - 2 of 2
  • Item
    Strong field ionization of small hydrocarbon chains with full 3D momentum analysis
    (Bristol : IOP Publ., 2015) Schulz, Claus Peter; Birkner, Sascha; Furch, Federico J.; Anderson, Alexandria; Mikosch, Jochen; Schell, Felix; Vrakking, Marc J. J.
    Strong field ionization of small hydrocarbon chains is studied in a kinematic complete experiment using a reaction microscope. By coincidence detection of ions and electrons different ionization continua populated during the ionization process are identified. In addition, photoelectron momentum distributions from laser-aligned molecules allow to characterize the electron wavepackets emerging from different Dyson orbitals.
  • Item
    Molecular orbital imprint in laser-driven electron recollision
    (Washington, DC [u.a.] : Assoc., 2018) Schell, Felix; Bredtmann, Timm; Schulz, Claus Peter; Patchkovskii, Serguei; Vrakking, Marc J. J.; Mikosch, Jochen
    Electrons released by strong-field ionization from atoms and molecules or in solids can be accelerated in the oscillating laser field and driven back to their ion core. The ensuing interaction, phase-locked to the optical cycle, initiates the central processes underlying attosecond science. A common assumption assigns a single, welldefined return direction to the recolliding electron. We study laser-induced electron rescattering associated with two different ionization continua in the same, spatially aligned, polyatomic molecule. We show by experiment and theory that the electron return probability is molecular frame-dependent and carries structural information on the ionized orbital. The returning wave packet structure has to be accounted for in analyzing strong-field spectroscopy experiments that critically depend on the interaction of the laser-driven continuum electron, such as laser-induced electron diffraction.