Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Catechol Containing Polyelectrolyte Complex Nanoparticles as Local Drug Delivery System for Bortezomib at Bone Substitute Materials

2020, Vehlow, David, Wong, Jeremy P.H., Urban, Birgit, Weißpflog, Janek, Gebert, Annett, Schumacher, Matthias, Gelinsky, Michael, Stamm, Manfred, Müller, Martin

The proteasome inhibitor bortezomib (BZM) is one of the most potent anti-cancer drugs in the therapy of multiple myeloma. In this study, an adhesive drug delivery system (DDS) for BZM was developed. Therefore, we extended the present DDS concept of polyelectrolyte complex (PEC) nanoparticle (NP) based on electrostatic interactions between charged drug and polyelectrolyte (PEL) to a DDS concept involving covalent bonding between PEL and uncharged drugs. For this purpose, 3,4-dihydroxyphenyl acetic acid (DOPAC) was polymerized via an oxidatively induced coupling reaction. This novel chemo-reactive polyanion PDOPAC is able to temporarily bind boronic acid groups of BZM via its catechol groups, through esterification. PDOPAC was admixed to poly(l-glutamic acid) (PLG) and poly(l-lysine) (PLL) forming a redispersible PEC NP system after centrifugation, which is advantageous for further colloid and BZM loading processing. It was found that the loading capacity (LC) strongly depends on the PDOPAC and catechol content in the PEC NP. Furthermore, the type of loading and the net charge of the PEC NP affect LC and the residual content (RC) after release. Release experiments of PDOPAC/PEC coatings were performed at medically relevant bone substitute materials (calcium phosphate cement and titanium niobium alloy) whereby the DDS worked independently of the surface properties. Additionally, in contrast to electrostatically based drug loading the release behavior of covalently bound, uncharged BZM is independent of the ionic strength (salt content) in the release medium.

Loading...
Thumbnail Image
Item

Electrodeposition of Sr-substituted hydroxyapatite on low modulus beta-type Ti-45Nb and effect on in vitro Sr release and cell response

2019, Schmidt, Romy, Gebert, Annett, Schumacher, Matthias, Hoffmann, Volker, Voss, Andrea, Pilz, Stefan, Uhlemann, Margitta, Lode, Anja, Gelinsky, Michael

Beta-type Ti-based alloys are promising new materials for bone implants owing to their excellent mechanical biofunctionality and biocompatibility. For treatment of fractures in case of systemic diseases like osteoporosis the generation of implant surfaces which actively support the problematic bone healing is a most important aspect. This work aimed at developing suitable approaches for electrodeposition of Sr-substituted hydroxyapatite (Srx-HAp) coatings onto Ti-45Nb. Potentiodynamic polarization measurements in electrolytes with 1.67 mmol/L Ca(NO3)2, which was substituted by 0, 10, 50 and 100% Sr(NO3)2, and 1 mmol/L NH4H2PO4 at 333 K revealed the basic reaction steps for OH– and PO4 3− formation needed for the chemical precipitation of Srx-HAp. Studies under potentiostatic control confirmed that partial or complete substitution of Ca2+- by Sr2+-ions in solution has a significant effect on the complex reaction process. High Sr2+-ion contents yield intermediate phases and a subsequent growth of more refined Srx-HAp coatings. Upon galvanostatic pulse-deposition higher reaction rates are controlled and in all electrolytes very fine needle-like crystalline coatings are obtained. With XRD the incorporation of Sr-species in the hexagonal HAp lattice is evidenced. Coatings formed in electrolytes with 10 and 50% Sr-nitrate were chemically analyzed with EDX mapping and GD-OES depth profiling. Only a fraction of the Sr-ions in solution is incorporated into the Srx-HAp coatings. Therein, the Sr-distribution is laterally homogeneous but non-homogeneous along the cross-section. Increasing Sr-content retards the coating thickness growth. Most promising coatings formed in the electrolyte with 10% Sr-nitrate were employed for Ca, P and Sr release analysis in Tris-Buffered Saline (150 mM NaCl, pH 7.6) at 310 K. At a sample surface: solution volume ratio of 1:200, after 24 h the amount of released Sr-ions was about 30–35% of that determined in the deposited Srx-HAp coating. In vitro studies with human bone marrow stromal cells (hBMSC) revealed that the released Sr-ions led to a significantly enhanced cell proliferation and osteogenic differentiation and that the Sr-HAp surface supported cell adhesion indicating its excellent cytocompatibility. © 2019 The Authors

Loading...
Thumbnail Image
Item

Functionalization of Ti-40Nb implant material with strontium by reactive sputtering

2017-10-10, Göttlicher, Markus, Rohnke, Marcus, Moryson, Yannik, Thomas, Jürgen, Sann, Joachim, Lode, Anja, Schumacher, Matthias, Schmidt, Romy, Pilz, Stefan, Gebert, Annett, Gemming, Thomas, Janek, Jürgen

Background: Surface functionalization of orthopedic implants with pharmaceutically active agents is a modern approach to enhance osseointegration in systemically altered bone. A local release of strontium, a verified bone building therapeutic agent, at the fracture site would diminish side effects, which could occur otherwise by oral administration. Strontium surface functionalization of specially designed titanium-niobium (Ti-40Nb) implant alloy would provide an advanced implant system that is mechanically adapted to altered bone with the ability to stimulate bone formation. Methods: Strontium-containing coatings were prepared by reactive sputtering of strontium chloride (SrCl2) in a self-constructed capacitively coupled radio frequency (RF) plasma reactor. Film morphology, structure and composition were investigated by scanning electron microscopy (SEM), time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HR-TEM) was used for the investigation of thickness and growth direction of the product layer. TEM lamellae were prepared using the focused ion beam (FIB) technique. Bioactivity of the surface coatings was tested by cultivation of primary human osteoblasts and subsequent analysis of cell morphology, viability, proliferation and differentiation. The results are correlated with the amount of strontium that is released from the coating in biomedical buffer solution, quantified by inductively coupled plasma mass spectrometry (ICP-MS). Results: Dense coatings, consisting of SrOxCly, of more than 100 nm thickness and columnar structure, were prepared. TEM images of cross sections clearly show an incoherent but well-structured interface between coating and substrate without any cracks. Sr2+ is released from the SrOxCly coating into physiological solution as proven by ICP-MS analysis. Cell culture studies showed excellent biocompatibility of the functionalized alloy. Conclusions: Ti-40Nb alloy, a potential orthopedic implant material for osteoporosis patients, could be successfully plasma coated with a dense SrOxCly film. The material performed well in in vitro tests. Nevertheless, the Sr2+ release must be optimized in future work to meet the requirements of an effective drug delivery system.