Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers

2017, Kobelke, Jens, Schuster, Kay, Bierlich, Jörg, Unger, Sonja, Schwuchow, Anka, Elsmann, Tino, Dellith, Jan, Aichele, Claudia, Fatobene Ando, Ron, Bartelt, Hartmut

We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.

Loading...
Thumbnail Image
Item

Fiber Fabry-Perot interferometer for curvature sensing

2016, Monteiro, Catarina S., Ferreira, Marta S., Silva, Susana O., Kobelke, Jens, Schuster, Kay, Bierlich, Jörg, Frazão, Orlando

A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/°C to 0.89 pm/°C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.

Loading...
Thumbnail Image
Item

Forming of noncircular cross-section SiO2 glass fibers

2005, Wegmann, Markus, Heiber, Juliane, Clemens, Frank, Graule, Thomas, Hülsenberg, Dagmar, Schuster, Kay

Silica glass fibers with triangular and rectangular cross-sections have been produced by two different means, namely preform drawing and powder extrusion. For the preform drawing method, silica glass rods were machined and polished to yield preforms with the desired cross-sections. These were then heated to temperatures in excess of 1600°C and drawn to fibers with approximately 265 μm × 265 μm × 265 μm triangular and 275 μm × 100 μm rectangular cross-sections exhibiting tensile strengths between 300 and 400 MPa and bending radii smaller than 50 mm. For the extrusion route, a silica nanopowder was compounded at ≈ 150°C with a polyethylene-based binder and extruded at similar temperatures through dies with the desired exit cross-section. The fibers were debound by thermally decomposing the binder and sintered at 1100°C to yield amorphous glass fibers with approximately 205 μm × 205 μm × 205 μm triangular and 275 μm × 90 μm rectangular cross-sections. Although the two manufacturing processes are radically different, both involve flow of a fluid with a temperature-dependent viscosity and this dictates that shape trueness (i.e. flat faces and sharp corners) is a function of the drawing and extrusion rates and the temperature during drawing and sintering.

Loading...
Thumbnail Image
Item

Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses

2018, Fatobene Ando, Mariana, Benzine, Omar, Pan, Zhiwen, Garden, Jean-Luc, Wondraczek, Katrin, Grimm, Stephan, Schuster, Kay, Wondraczek, Lothar

In binary aluminosilicate liquids and glasses, heterogeneity on intermediate length scale is a crucial factor for optical fiber performance, determining the lower limit of optical attenuation and Rayleigh scattering, but also clustering and precipitation of optically active dopants, for example, in the fabrication of high-power laser gain media. Here, we consider the low-frequency vibrational modes of such materials for assessing structural heterogeneity on molecular scale. We determine the vibrational density of states VDoS g(ω) using low-temperature heat capacity data. From correlation with low-frequency Raman spectroscopy, we obtain the Raman coupling coefficient. Both experiments allow for the extraction of the average dynamic correlation length as a function of alumina content. We find that this value decreases from about 3.9 nm to 3.3 nm when mildly increasing the alumina content from zero (vitreous silica) to 7 mol%. At the same time, the average inter-particle distance increases slightly due to the presence of oxygen tricluster species. In accordance with Loewensteinian dynamics, this proves that mild alumina doping increases structural homogeneity on molecular scale.

Loading...
Thumbnail Image
Item

Micro-fluorescene lifetime and spectral imaging of ytterbium doped laser materials

2018, Schreiber, T., Kuhn, S., Feldkamp, G., Schuster, Kay, Hein, S., Eberhardt, Ramona, Tünnermann, Andreas

We present the application of a confocal fluorescence microscope to the analysis of Yb-doped solid-state laser materials, with examples of Yb-doped crystals, photonic crystal fibers and fiber preforms made with different manufacturing processes. Beside the fluorescence lifetime image itself, a microscopic spectral fluorescence emission analysis is presented and spatially resolved emission cross sections are obtained. Doping concentration and its distributions and other laser optical parameters are measured, which help to analyze manufacturing steps. Further properties like photodarkening and saturation are addressed.

Loading...
Thumbnail Image
Item

Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers

2018, Baghdasaryan, Tigran, Geernaert, Thomas, Chah, Karima, Caucheteur, Christophe, Schuster, Kay, Kobelke, Jens, Thienpont, Hugo, Berghmans, Francis

It is common belief that photonic crystals behave similarly to isotropic and transparent media only when their feature sizes are much smaller than the wavelength of light. Here, we counter that belief and we report on photonic crystals that are transparent for anomalously high normalized frequencies up to 0.9, where the crystal’s feature sizes are comparable with the free space wavelength. Using traditional photonic band theory, we demonstrate that the isofrequency curves can be circular in the region above the first stop band for triangular lattice photonic crystals. In addition, by simulating how efficiently a tightly focused Gaussian beam propagates through the photonic crystal slab, we judge on the photonic crystal’s transparency rather than on isotropy only. Using this approach, we identified a wide range of photonic crystal parameters that provide anomalous transparency. Our findings indicate the possibility to scale up the features of photonic crystals and to extend their operational wavelength range for applications including optical cloaking and graded index guiding. We applied our result in the domain of femtosecond laser micromachining, by demonstrating what we believe to be the first point-by-point grating inscribed in a multi-ring photonic crystal fiber.