Search Results

Now showing 1 - 2 of 2
  • Item
    Building Hierarchical Martensite
    (Weinheim : Wiley-VCH, 2020) Schwabe, Stefan; Niemann, Robert; Backen, Anja; Wolf, Daniel; Damm, Christine; Walter, Tina; Seiner, Hanuš; Heczko, Oleg; Nielsch, Kornelius; Fähler, Sebastian
    Martensitic materials show a complex, hierarchical microstructure containing structural domains separated by various types of twin boundaries. Several concepts exist to describe this microstructure on each length scale, however, there is no comprehensive approach bridging the whole range from the nano- up to the macroscopic scale. Here, it is described for a Ni-Mn-based Heusler alloy how this hierarchical microstructure is built from scratch with just one key parameter: the tetragonal distortion of the basic building block at the atomic level. Based on this initial block, five successive levels of nested building blocks are introduced. At each level, a larger building block is formed by twinning the preceding one to minimize the relevant energy contributions locally. This naturally explains the coexistence of different types of twin boundaries. The scale-bridging approach of nested building blocks is compared with experiments in real and reciprocal space. The approach of nested building blocks is versatile as it can be applied to the broad class of functional materials exhibiting diffusionless transformations. © 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    What is the speed limit of martensitic transformations?
    (Abingdon : Taylor & Francis, 2022) Schwabe, Stefan; Lünser, Klara; Schmidt, Daniel; Nielsch, Kornelius; Gaal, Peter; Fähler, Sebastian
    Structural martensitic transformations enable various applications, which range from high stroke actuation and sensing to energy efficient magnetocaloric refrigeration and thermomagnetic energy harvesting. All these emerging applications benefit from a fast transformation, but up to now their speed limit has not been explored. Here, we demonstrate that a thermoelastic martensite to austenite transformation can be completed within 10 ns. We heat epitaxial Ni-Mn-Ga films with a nanosecond laser pulse and use synchrotron diffraction to probe the influence of initial temperature and overheating on transformation rate and ratio. We demonstrate that an increase in thermal energy drives this transformation faster. Though the observed speed limit of 2.5 × 1027 (Js)1 per unit cell leaves plenty of room for further acceleration of applications, our analysis reveals that the practical limit will be the energy required for switching. Thus, martensitic transformations obey similar speed limits as in microelectronics, as expressed by the Margolus–Levitin theorem.