Search Results

Now showing 1 - 6 of 6
  • Item
    Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan
    (Basel : MDPI, 2020) Weißpflog, Janek; Gündel, Alexander; Vehlow, David; Steinbach, Christine; Müller, Martin; Boldt, Regine; Schwarz, Simona; Schwarz, Dana
    The biopolymer chitosan is a very efficient adsorber material for the removal of heavy metal ions from aqueous solutions. Due to the solubility properties of chitosan it can be used as both a liquid adsorber and a solid flocculant for water treatment reaching outstanding adsorption capacities for a number of heavy metal ions. However, the type of anion corresponding to the investigated heavy metal ions has a strong influence on the adsorption capacity and sorption mechanism on chitosan. In this work, the adsorption capacity of the heavy metal ions manganese, iron, cobalt, nickel, copper, and zinc were investigated in dependence on their corresponding anions sulfate, chloride, and nitrate by batch experiments. The selectivity of the different heavy metal ions was analyzed by column experiments. © 2020 by the authors.
  • Item
    A Complementary and Revised View on the N-Acylation of Chitosan with Hexanoyl Chloride
    (Basel : MDPI, 2021) Reis, Berthold; Gerlach, Niklas; Steinbach, Christine; Haro Carrasco, Karina; Oelmann, Marina; Schwarz, Simona; Müller, Martin; Schwarz, Dana
    The modification of the biobased polymer chitosan is a broad and widely studied field. Herein, an insight into the hydrophobization of low-molecular-weight chitosan by substitution of amino functionalities with hexanoyl chloride is reported. Thereby, the influence of the pH of the reaction media was investigated. Further, methods for the determination of the degree of substitution based on 1H-NMR, FTIR, and potentiometric titration were compared and discussed regarding their accuracy and precision. 1H-NMR was the most accurate method, while FTIR and the potentiometric titration, though precise and reproducible, underlie the influence of complete protonation and solubility issues. Additionally, the impact of the pH variation during the synthesis on the properties of the samples was investigated by Cd2+ sorption experiments. The adjusted pH values during the synthesis and, therefore, the obtained degrees of substitution possessed a strong impact on the adsorption properties of the final material.
  • Item
    Waterborne phenolic, triazine-based porous polymer particles for the removal of toxic metal ions
    (Amsterdam : Elsevier, 2022) Borchert, Konstantin B.L.; Frenzel, Robert; Gerlach, Niklas; Reis, Berthold; Steinbach, Christine; Kohn, Benjamin; Scheler, Ulrich; Schwarz, Simona; Schwarz, Dana
    Highly functional and also highly porous materials are presenting great advantages for applications in energy storage, catalysis and separation processes, which is why a continuous development of new materials can be seen. To create a material combining the promising potential interactions of triazine groups with the electrostatic or hydrogen bonding interactions of phenolic groups, a completely new polymeric resin was synthesized. From an eco-friendly dispersion polymerization in water, a copolymer network was obtained, which includes nine hydroxyl groups and one s-triazine ring per repetition unit. The polymer forms highly porous particles with specific surface areas up to 531 ​m2/g and a negative streaming potential over a great pH range. The adsorption isotherms of Ni2+, Cd2+, and Pb2+ were studied in more detail achieving very good adsorption capacities (16 mg Ni2+/g, 24 mg Cd2+/g, and 90 mg Pb2+/g). Demonstrating excellent properties for adsorption applications. The adsorbent exhibited selectivity for the adsorption of Pb2+ over more commonly occurring but non-toxic metal ions such as Fe2+, Ca2+, Mg2+, and K+. Furthermore, reusability of the material was demonstrated by facile, quantitative desorption of adsorbed Pb2+ with a small amount of diluted HCl, circumventing organic chelators. Subsequently, adsorption was carried out without decrease in adsorption performance.
  • Item
    Surface Functionalization by Stimuli-Sensitive Microgels for Effective Enzyme Uptake and Rational Design of Biosensor Setups
    (Basel : MDPI, 2018) Sigolaeva, Larisa V.; Pergushov, Dmitry V.; Oelmann, Marina; Schwarz, Simona; Brugnoni, Monia; Kurochkin, Ilya N.; Plamper, Felix A.; Fery, Andreas; Richtering, Walter
    We highlight microgel/enzyme thin films that were deposited onto solid interfaces via two sequential steps, the adsorption of temperature- and pH-sensitive microgels, followed by their complexation with the enzyme choline oxidase, ChO. Two kinds of functional (ionic) microgels were compared in this work in regard to their adsorptive behavior and interaction with ChO, that is, poly(N-isopropylacrylamide-co-N-(3-aminopropyl)methacrylamide), P(NIPAM-co-APMA), bearing primary amino groups, and poly(N-isopropylacrylamide-co-N-[3-(dimethylamino) propyl]methacrylamide), P(NIPAM-co-DMAPMA), bearing tertiary amino groups. The stimuli-sensitive properties of the microgels in the solution were characterized by potentiometric titration, dynamic light scattering (DLS), and laser microelectrophoresis. The peculiarities of the adsorptive behavior of both the microgels and the specific character of their interaction with ChO were revealed by a combination of surface characterization techniques. The surface charge was characterized by electrokinetic analysis (EKA) for the initial graphite surface and the same one after the subsequent deposition of the microgels and the enzyme under different adsorption regimes. The masses of wet microgel and microgel/enzyme films were determined by quartz crystal microbalance with dissipation monitoring (QCM-D) upon the subsequent deposition of the components under the same adsorption conditions, on a surface of gold-coated quartz crystals. Finally, the enzymatic responses of the microgel/enzyme films deposited on graphite electrodes to choline were tested amperometrically. The presence of functional primary amino groups in the P(NIPAM-co-APMA) microgel enables a covalent enzyme-to-microgel coupling via glutar aldehyde cross-linking, thereby resulting in a considerable improvement of the biosensor operational stability.
  • Item
    Complex calcium carbonate/polymer microparticles as carriers for aminoglycoside antibiotics
    (London : RSC Publishing, 2018) Racovita, Stefania; Vasiliu, Ana-Lavinia; Bele, Adrian; Schwarz, Dana; Steinbach, Christine; Boldt, Regine; Schwarz, Simona; Mihai, Marcela
    Composite microparticles of CaCO3 and two pectin samples (which differ by the functional group ratio) or corresponding nonstoichiometric polyelectrolyte complexes with different molar ratios (0.5, 0.9 and 1.2) are obtained, characterized and tested for loading and release of streptomycin and kanamycin sulphate. The synthesized carriers were characterized before and after drug loading in terms of morphology (by SEM using secondary electron and energy selective backscattered electron detectors), porosity (by water sorption isotherms) and elemental composition (by elemental mapping using energy dispersive X-ray and FTIR spectroscopy). The kinetics of the release mechanism from the microparticles was investigated using Higuchi and Korsmeyer-Peppas mathematical models.
  • Item
    Hollow Au@TiO2 porous electrospun nanofibers for catalytic applications
    (Cambridge : RSC, 2020) Kumar, Labeesh; Singh, Sajan; Horechyy, Andriy; Formanek, Petr; Hübner, René; Albrecht, Victoria; Weißpflog, Janek; Schwarz, Simona; Puneet, Puhup; Nandan, Bhanu
    Catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles were fabricated using a combination of sol-gel chemistry and coaxial electrospinning technique. We report the fabrication of catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles (AuNPs) using a combination of sol-gel chemistry and coaxial electrospinning technique. The coaxial electrospinning involved the use of a mixture of poly(vinyl pyrrolidone) (PVP) and titania sol as the shell forming component, whereas a mixture of poly(4-vinyl pyridine) (P4VP) and pre-synthesized AuNPs constituted the core forming component. The core-shell nanofibers were calcined stepwise up to 600 °C which resulted in decomposition and removal of the organic constituents of the nanofibers. This led to the formation of porous and hollow titania nanofibers, where the catalytic AuNPs were embedded in the inner wall of the titania shell. The catalytic activity of the prepared Au@TiO2 porous nanofibers was investigated using a model reaction of catalytic reduction of 4-nitrophenol and Congo red dye in the presence of NaBH4. The Au@TiO2 porous and hollow nanofibers exhibited excellent catalytic activity and recyclability, and the morphology of the nanofibers remained intact after repeated usage. The presented approach could be a promising route for immobilizing various nanosized catalysts in hollow titania supports for the design of stable catalytic systems where the added photocatalytic activity of titania could further be of significance. This journal is © The Royal Society of Chemistry.