Search Results

Now showing 1 - 4 of 4
  • Item
    Scanning X-ray nanodiffraction from ferroelectric domains in strained K0.75Na0.25NbO3 epitaxial films grown on (110) TbScO3
    (Copenhagen : Munksgaard, 2017) Schmidbauer, Martin; Hanke, Michael; Kwasniewski, Albert; Braun, Dorothee; von Helden, Leonard; Feldt, Christoph; Leake, Steven John; Schwarzkopf, Jutta
    Scanning X-ray nanodiffraction on a highly periodic ferroelectric domain pattern of a strained K0.75Na0.25NbO3 epitaxial layer has been performed by using a focused X-ray beam of about 100 14;nm probe size. A 90°-rotated domain variant which is aligned along [1 2]TSO has been found in addition to the predominant domain variant where the domains are aligned along the [12]TSO direction of the underlying (110) TbScO3 (TSO) orthorhombic substrate. Owing to the larger elastic strain energy density, the 90°-rotated domains appear with significantly reduced probability. Furthermore, the 90°-rotated variant shows a larger vertical lattice spacing than the 0°-rotated domain variant. Calculations based on linear elasticity theory substantiate that this difference is caused by the elastic anisotropy of the K0.75Na0.25NbO3 epitaxial layer.
  • Item
    Heteroepitaxial growth of T-Nb2O5 on SrTiO3
    (Basel : MDPI, 2018) Boschker, Jos E.; Markurt, Toni; Albrecht, Martin; Schwarzkopf, Jutta
    There is a growing interest in exploiting the functional properties of niobium oxides in general and of the T-Nb2O5 polymorph in particular. Fundamental investigations of the properties of niobium oxides are, however, hindered by the availability of materials with sufficient structural perfection. It is expected that high-quality T-Nb2O5 can be made using heteroepitaxial growth. Here, we investigated the epitaxial growth of T-Nb2O5 on a prototype perovskite oxide, SrTiO3. Even though there exists a reasonable lattice mismatch in one crystallographic direction, these materials have a significant difference in crystal structure: SrTiO3 is cubic, whereas T-Nb2O5 is orthorhombic. It is found that this difference in symmetry results in the formation of domains that have the T-Nb2O5 c-axis aligned with the SrTiO3 <001>s in-plane directions. Hence, the number of domain orientations is four and two for the growth on (100)s- and (110)s-oriented substrates, respectively. Interestingly, the out-of-plane growth direction remains the same for both substrate orientations, suggesting a weak interfacial coupling between the two materials. Despite challenges associated with the heteroepitaxial growth of T-Nb2O5, the T-Nb2O5 films presented in this paper are a significant improvement in terms of structural quality compared to their polycrystalline counterparts.
  • Item
    Self-stabilization of the equilibrium state in ferroelectric thin films
    (Amsterdam : Elsevier, 2022) Gaal, Peter; Schmidt, Daniel; Khosla, Mallika; Richter, Carsten; Boesecke, Peter; Novikov, Dmitri; Schmidbauer, Martin; Schwarzkopf, Jutta
    (K,Na)NbO3 is a lead-free and sustainable ferroelectric material with electromechanical parameters comparable to Pb(Zr,Ti)O3 (PZT) and other lead-based solid solutions. It is therefore a promising candidate for caloric cooling and energy harvesting applications. Specifically, the structural transition from the low-temperature Mc- to the high-temperature c-phase displays a rich hierarchical order of domains and superdomains, that forms at specific strain conditions. The relevant length scales are few tens of nanometers for the domain and few micrometers for the superdomain size, respectively. Phase-field calculations show that this hierarchical order adds to the total free energy of the solid. Thus, domains and their formation has a strong impact on the functional properties relevant for electrocaloric cooling or energy harvesting applications. However, monitoring the formation of domains and superdomains is difficult and requires both, high spatial and high temporal resolution of the experiment. Synchrotron-based time-resolved X-ray diffraction methods in combination with scanning imaging X-ray microscopy is applied to resolve the local dynamics of the domain morphology with sub-micrometer spatial and nanosecond temporal resolution. In this regime, the material displays a novel self-stabilization mechanism of the domain morphology, which may be a general property of first-order phase transitions.
  • Item
    Strain engineering of ferroelectric domains in KxNa1−xNbO3 epitaxial layers
    (Lausanne : Frontiers Media, 2017) Schwarzkopf, Jutta; Braun, Dorothee; Hanke, Michael; Uecker, Reinhard; Schmidbauer, Martin
    The application of lattice strain through epitaxial growth of oxide films on lattice mismatched perovskite-like substrates strongly influences the structural properties of ferroelectric domains and their corresponding piezoelectric behavior. The formation of different ferroelectric phases can be understood by a strain-phase diagram, which is calculated within the framework of the Landau–Ginzburg–Devonshire theory. In this paper, we illustrate the opportunity of ferroelectric domain engineering in the KxNa1−xNbO3 lead-free material system. In particular, the following examples are discussed in detail: (i) Different substrates (NdGaO3, SrTiO3, DyScO3, TbScO3, and GdScO3) are used to systematically tune the incorporated epitaxial strain from compressive to tensile. This can be exploited to adjust the NaNbO3 thin film surface orientation and, concomitantly, the vector of electrical polarization, which rotates from mainly vertical to exclusive in-plane orientation. (ii) In ferroelectric NaNbO3, thin films grown on rare-earth scandate substrates, highly regular stripe domain patterns are observed. By using different film thicknesses, these can be tailored with regard to domain periodicity and vertical polarization component. (iii) A featured potassium concentration of x = 0.9 of KxNa1−xNbO3 thin films grown on (110) NdScO3 substrates favors the coexistence of two equivalent, monoclinic, but differently oriented ferroelectric phases. A complicated herringbone domain pattern is experimentally observed which consists of alternating MC and a1a2 domains. The coexistence of different types of ferroelectric domains leads to polarization discontinuities at the domain walls, potentially enabling high piezoelectric responses. In each of these examples, the experimental results are in excellent agreement with predictions based on the linear elasticity theory.