Search Results

Now showing 1 - 3 of 3
  • Item
    Guiding shear bands in bulk metallic glasses using stress fields : A perspective from the activation of flow units
    (Woodbury, NY : Inst., 2020) Kosiba, K.; Scudino, S.; Bednarcik, J.; Bian, J.; Liu, G.; Kühn, U.; Pauly, S.
    Controlling shear band propagation is the key to obtain ductile metallic glasses. Here, we use a residual stress field to vary the direction of shear band propagation. We ascribe this behavior to the effect of the stress field on the activation of shear transformation zones (STZs) along their characteristic direction and we quantify this contribution to the energy of the process. Because of the progressively adverse orientation of the stress field, the energy stored as shear in the STZ decreases to a level where shear band propagation at alternative angles becomes energetically more favorable. © 2020 authors.
  • Item
    Is the energy density a reliable parameter for materials synthesis by selective laser melting?
    (London [u.a.] : Taylor & Francis, 2017-3-9) Prashanth, K.G.; Scudino, S.; Maity, T.; Das, J.; Eckert, J.
    The effective fabrication of materials using selective laser melting depends on the process parameters. Here, we analyse the suitability of the energy density to represent the energy transferred to the powder bed, which is effectively used to melt the particles and to produce the bulk specimens. By properly varying laser power and speed in order to process the powder at constant energy density, we show that the equation currently used to calculate the energy density gives only an approximate estimation and that hatch parameters and material properties should be considered to correctly evaluate the energy density.
  • Item
    High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors
    (London : Nature Publishing Group, 2018) Kim, S.-Y.; Lee, G.-Y.; Park, G.-H.; Kim, H.-A.; Lee, A.-Y.; Scudino, S.; Prashanth, K.G.; Kim, D.-H.; Eckert, J.; Lee, M.-H.
    We report the methods increasing both strength and ductility of aluminum alloys transformed from amorphous precursor. The mechanical properties of bulk samples produced by spark-plasma sintering (SPS) of amorphous Al-Ni-Co-Dy powders at temperatures above 673 K are significantly enhanced by in-situ crystallization of nano-scale intermetallic compounds during the SPS process. The spark plasma sintered Al84Ni7Co3Dy6 bulk specimens exhibit 1433 MPa compressive yield strength and 1773 MPa maximum strength together with 5.6% plastic strain, respectively. The addition of Dy enhances the thermal stability of primary fcc Al in the amorphous Al-TM -RE alloy. The precipitation of intermetallic phases by crystallization of the remaining amorphous matrix plays important role to restrict the growth of the fcc Al phase and contributes to the improvement of the mechanical properties. Such fully crystalline nano- or ultrafine-scale Al-Ni-Co-Dy systems are considered promising for industrial application because their superior mechanical properties in terms of a combination of very high room temperature strength combined with good ductility.