Search Results

Now showing 1 - 2 of 2
  • Item
    Structure evolution of soft magnetic (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) bulk glassy alloys
    (Amsterdam [u.a.] : Elsevier Science, 2015) Stoica, Mihai; Ramasamy, Parthiban; Kaban, Ivan; Scudino, Sergio; Nicoara, Mircea; Vaughan, Gavin B.M.; Wright, Jonathan; Kumar, Ravi; Eckert, Jürgen
    Fully amorphous rods with diameters up to 2 mm diameter were obtained upon 0.5 at.% Cu addition to the Fe36Co36B19.2Si4.8Nb4 bulk metallic glass. The Cu-added glass shows a very good thermal stability but, in comparison with the Cu-free base alloy, the entire crystallization behavior is drastically changed. Upon heating, the glassy (Fe36Co36B19.2Si4.8Nb4)99.5Cu0.5 samples show two glass transitions-like events, separated by an interval of more than 100 K, in between which a bcc-(Fe,Co) solid solution is formed. The soft magnetic properties are preserved upon Cu-addition and the samples show a saturation magnetization of 1.1 T combined with less than 2 A/m coercivity. The relaxation behavior prior to crystallization, as well as the crystallization behavior, were studied by time-resolved X-ray diffraction using synchrotron radiation. It was found that both glassy alloys behave similar at temperatures below the glass transition. Irreversible structural transformations take place when approaching the glass transition and in the supercooled liquid region.
  • Item
    Microstructure and Mechanical Behavior of Al-Mg Composites Synthesized by Reactive Sintering
    (Basel : MDPI, 2018-9-25) Shahid, Rub Nawaz; Scudino, Sergio
    Lightweight metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The effect of the reaction between aluminum and magnesium on the microstructure and mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with the increase of the content of intermetallic reinforcement at the expense of the plastic deformation. The yield strength of the composites follows the iso-stress model when the data are plotted as a function of the intermetallic content.