Search Results

Now showing 1 - 2 of 2
  • Item
    Stimulated emission and absorption of photons in magnetic point contacts
    (Milton Park : Taylor & Francis, 2012) Naidyuk, Yu G.; Balkashin, O.P.; Fisun, V.V.; Yanson, I.K.; Kadigrobov, A.; Shekhter, R.I.; Jonson, M.; Neu, V.; Seifert, M.; Korenivski, V.
    Point contacts between high anisotropy ferromagnetic SmCo5 and normal metal Cu are used to achieve a strong spin-population inversion in the contact core. Subjected to microwave irradiation in resonance with the Zeeman splitting in Cu, the inverted spin population relaxes through stimulated spin-flip photon emission, detected as peaks in the point-contact resistance. Resonant spin-flip photon absorption is detected as resistance minima, corresponding to sourcing the photon field energy into the electrical circuit. These results demonstrate fundamental mechanisms that are potentially useful in designing metallic spin-based lasers.
  • Item
    Domain evolution during the spin-reorientation transition in epitaxial NdCo5 thin films
    (Milton Park : Taylor & Francis, 2013) Seifert, M.; Schultz, L.; Schäfer, R.; Neu, V.; Hankemeier, S.; Rössler, S.; Frömter, R.; Oepen, H.P.
    The domain structure and its changes with temperature were investigated for an epitaxial NdCo5 thin film with in-plane texture in which a spin-reorientation transition takes place from the easy c-axis via the easy cone to the easy plane. Scanning electron microscopy with polarization analysis reveals a transition from a two-domain state at temperatures above 318 K via a four-domain state back to a 90°-rotated two-domain state at temperatures below 252 K. The transition temperatures correspond well to those determined by global magnetization measurements. The magnetization configuration at the three different regimes of magnetic anisotropy and its transition with temperature were analysed in detail. From the local measurements, the spin-reorientation angle and the magnetocrystalline anisotropy constants of first and second order were derived.