Search Results

Now showing 1 - 3 of 3
  • Item
    Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET
    (München : European Geopyhsical Union, 2013) Pappalardo, G.; Mona, L.; D'Amico, G.; Wandinger, U.; Adam, M.; Amodeo, A.; Ansmann, A.; Apituley, A.; Alados Arboledas, L.; Balis, D.; Boselli, A.; Bravo-Aranda, J.A.; Chaikovsky, A.; Comeron, A.; Cuesta, J.; De Tomasi, F.; Freudenthaler, V.; Gausa, M.; Giannakaki, E.; Giehl, H.; Giunta, A.; Grigorov, I.; Groß, S.; Haeffelin, M.; Hiebsch, A.; Iarlori, M.; Lange, D.; Linné, H.; Madonna, F.; Mattis, I.; Mamouri, R.-E.; McAuliffe, M.A.P.; Mitev, V.; Molero, F.; Navas-Guzman, F.; Nicolae, D.; Papayannis, A.; Perrone, M.R.; Pietras, C.; Pietruczuk, A.; Pisani, G.; Preißler, J.; Pujadas, M.; Rizi, V.; Ruth, A.A.; Schmidt, J.; Schnell, F.; Seifert, P.; Serikov, I.; Sicard, M.; Simeonov, V.; Spinelli, N.; Stebel, K.; Tesche, M.; Trickl, T.; Wang, X.; Wagner, F.; Wiegner, M.; Wilson, K.M.
    The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.
  • Item
    The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe – Aerosol properties and black carbon mixing state
    (München : European Geopyhsical Union, 2014) Dahlkötter, F.; Gysel, M.; Sauer, D.; Minikin, A.; Baumann, R.; Seifert, P.; Ansmann, A.; Fromm, M.; Voigt, C.; Weinzierl, B.
    During the CONCERT 2011 field experiment with the DLR research aircraft Falcon, an enhanced aerosol layer with particle linear depolarization ratios of 6–8% at 532 nm was observed at altitudes above 10 km over northeast Germany on 16 September 2011. Dispersion simulations with HYSPILT suggest that the elevated aerosol layer originated from the Pagami Creek forest fire in Minnesota, USA, which caused pyro-convective uplift of particles and gases. The 3–4 day-old smoke plume had high total refractory black carbon (rBC) mass concentrations of 0.03–0.35 μg m−3 at standard temperature and pressure (STP) with rBC mass equivalent diameter predominantly smaller than 130 nm. Assuming a core-shell particle structure, the BC cores exhibit very thick (median: 105–136 nm) BC-free coatings. A large fraction of the BC-containing particles disintegrated into a BC-free fragment and a BC fragment while passing through the laser beam of the Single Particle Soot Photometer (SP2). In this study, the disintegration is a result of very thick coatings around the BC cores. This is in contrast to a previous study in a forest-fire plume, where it was hypothesized to be a result of BC cores being attached to a BC-free particle. For the high-altitude forest-fire aerosol layer observed in this study, increased mass specific light-absorption cross sections of BC can be expected due to the very thick coatings around the BC cores, while this would not be the case for the attached-type morphology. We estimate the BC mass import from the Pagami Creek forest fire into the upper troposphere/lower stratosphere (UTLS) region (best estimate: 25 Mg rBC). A comparison to black carbon emission rates from aviation underlines the importance of pyro-convection on the BC load in the UTLS region. Our study provides detailed information on the microphysics and the mixing state of BC in the forest-fire aerosol layer in the upper troposphere that can be used to better understand and investigate the radiative impact of such upper tropospheric aerosol layers.
  • Item
    The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe
    (Göttingen : Copernicus GmbH, 2018) Weger, M.; Heinold, B.; Engler, C.; Schumann, U.; Seifert, A.; Fößig, R.; Voigt, C.; Baars, H.; Blahak, U.; Borrmann, S.; Hoose, C.; Kaufmann, S.; Krämer, M.; Seifert, P.; Senf, F.; Schneider, J.; Tegen, I.
    A regional modeling study on the impact of desert dust on cloud formation is presented for a major Saharan dust outbreak over Europe from 2 to 5 April 2014. The dust event coincided with an extensive and dense cirrus cloud layer, suggesting an influence of dust on atmospheric ice nucleation. Using interactive simulation with the regional dust model COSMO-MUSCAT, we investigate cloud and precipitation representation in the model and test the sensitivity of cloud parameters to dust-cloud and dust-radiation interactions of the simulated dust plume. We evaluate model results with ground-based and spaceborne remote sensing measurements of aerosol and cloud properties, as well as the in situ measurements obtained during the ML-CIRRUS aircraft campaign. A run of the model with single-moment bulk microphysics without online dust feedback considerably underestimated cirrus cloud cover over Germany in the comparison with infrared satellite imagery. This was also reflected in simulated upper-Tropospheric ice water content (IWC), which accounted for only 20 % of the observed values. The interactive dust simulation with COSMO-MUSCAT, including a two-moment bulk microphysics scheme and dust-cloud as well as dust-radiation feedback, in contrast, led to significant improvements. The modeled cirrus cloud cover and IWC were by at least a factor of 2 higher in the relevant altitudes compared to the noninteractive model run. We attributed these improvements mainly to enhanced deposition freezing in response to the high mineral dust concentrations. This was corroborated further in a significant decrease in ice particle radii towards more realistic values, compared to in situ measurements from the ML-CIRRUS aircraft campaign. By testing different empirical ice nucleation parameterizations, we further demonstrate that remaining uncertainties in the ice-nucleating properties of mineral dust affect the model performance at least as significantly as including the online representation of the mineral dust distribution. Dust-radiation interactions played a secondary role for cirrus cloud formation, but contributed to a more realistic representation of precipitation by suppressing moist convection in southern Germany. In addition, a too-low specific humidity in the 7 to 10 km altitude range in the boundary conditions was identified as one of the main reasons for misrepresentation of cirrus clouds in this model study.