Search Results

Now showing 1 - 7 of 7
  • Item
    Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
    (London : The Royal Society, 2018) Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.
  • Item
    State-of-the-art global models underestimate impacts from climate extremes
    ([London] : Nature Publishing Group UK, 2019) Schewe, Jacob; Gosling, Simon N.; Reyer, Christopher; Zhao, Fang; Ciais, Philippe; Elliott, Joshua; Francois, Louis; Huber, Veronika; Lotze, Heike K.; Seneviratne, Sonia I.; van Vliet, Michelle T. H.; Vautard, Robert; Wada, Yoshihide; Breuer, Lutz; Büchner, Matthias; Carozza, David A.; Chang, Jinfeng; Coll, Marta; Deryng, Delphine; de Wit, Allard; Eddy, Tyler D.; Folberth, Christian; Frieler, Katja; Friend, Andrew D.; Gerten, Dieter; Gudmundsson, Lukas; Hanasaki, Naota; Ito, Akihiko; Khabarov, Nikolay; Kim, Hyungjun; Lawrence, Peter; Morfopoulos, Catherine; Müller, Christoph; Müller Schmied, Hannes; Orth, René; Ostberg, Sebastian; Pokhrel, Yadu; Pugh, Thomas A. M.; Sakurai, Gen; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Steenbeek, Jeroen; Steinkamp, Jörg; Tang, Qiuhong; Tian, Hanqin; Tittensor, Derek P.; Volkholz, Jan; Wang, Xuhui; Warszawski, Lila
    Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
  • Item
    Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty
    (Bristol : IOP Publ., 2018) Schleussner, Carl-Friedrich; Deryng, Delphine; Müller, Christoph; Elliott, Joshua; Saeed, Fahad; Folberth, Christian; Liu, Wenfeng; Wang, Xuhui; Pugh, Thomas A. M.; Thiery, Wim; Seneviratne, Sonia I.; Rogelj, Joeri
    Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.
  • Item
    Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
    (Hoboken, NJ : Wiley-Blackwell, 2020) Lange, Stefan; Volkholz, Jan; Geiger, Tobias; Zhao, Fang; Vega, Iliusi; Veldkamp, Ted; Reyer, Christopher P.O.; Warszawski, Lila; Huber, Veronika; Jägermeyr, Jonas; Schewe, Jacob; Bresch, David N.; Büchner, Matthias; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; Emanuel, Kerry; Folberth, Christian; Gerten, Dieter; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Henrot, Alexandra-Jane; Hickler, Thomas; Honda, Yasushi; Ito, Akihiko; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Müller, Christoph; Nishina, Kazuya; Ostberg, Sebastian; Müller Schmied, Hannes; Seneviratne, Sonia I.; Stacke, Tobias; Steinkamp, Jörg; Thiery, Wim; Wada, Yoshihide; Willner, Sven; Yang, Hong; Yoshikawa, Minoru; Yue, Chao; Frieler, Katja
    The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.
  • Item
    The concerns of the young protesters are justified: A statement by Scientists for Future concerning the protests for more climate protection
    (München : Oekom Verl., 2019) Hagedorn, Gregor; Loew, Thomas; Seneviratne, Sonia I.; Lucht, Wolfgang; Beck, Marie-Luise; Hesse, Janina; Knutti, Reto; Quaschning, Volker; Schleimer, Jan-Hendrik; Mattauch, Linus; Breyer, Christian; Hübener, Heike; Kirchengast, Gottfried; Chodura, Alice; Clausen, Jens; Creutzig, Felix; Darbi, Marianne; Daub, Claus-Heinrich; Ekardt, Felix; Göpel, Maja; Hardt, Judith N.; Hertin, Julia; Hickler, Thomas; Köhncke, Arnulf; Köster, Stephan; Krohmer, Julia; Kromp-Kolb, Helga; Leinfelder, Reinhold; Mederake, Linda; Neuhaus, Michael; Rahmstorf, Stefan; Schmidt, Christine; Schneider, Christoph; Schneider, Gerhard; Seppelt, Ralf; Spindler, Uli; Springmann, Marco; Staab, Katharina; Stocker, Thomas F.; Steininger, Karl; Hirschhausen, Eckart von; Winter, Susanne; Wittau, Martin; Zens, Josef
    In March 2019, German-speaking scientists and scholars calling themselves Scientists for Future, published a statement in support of the youth protesters in Germany, Austria, and Switzerland (Fridays for Future, Klimastreik/Climate Strike), verifying the scientific evidence that the youth protestors refer to. In this article, they provide the full text of the statement, including the list of supporting facts (in both English and German) as well as an analysis of the results and impacts of the statement. Furthermore, they reflect on the challenges for scientists and scholars who feel a dual responsibility: on the one hand, to remain independent and politically neutral, and, on the other hand, to inform and warn societies of the dangers that lie ahead. © 2019 G. Hagedorn et al.; licensee oekom verlag.This Open Access article is published under the terms of the Creative Commons Attribution License CCBY4.0 (http://creativecommons.org/licenses/by/4.0).
  • Item
    Responsibility of major emitters for country-level warming and extreme hot years
    (London : Springer Nature, 2022) Beusch, Lea; Nauels, Alexander; Gudmundsson, Lukas; Gütschow, Johannes; Schleussner, Carl-Friedrich; Seneviratne, Sonia I.
    The contributions of single greenhouse gas emitters to country-level climate change are generally not disentangled, despite their relevance for climate policy and litigation. Here, we quantify the contributions of the five largest emitters (China, US, EU-27, India, and Russia) to projected 2030 country-level warming and extreme hot years with respect to pre-industrial climate using an innovative suite of Earth System Model emulators. We find that under current pledges, their cumulated 1991–2030 emissions are expected to result in extreme hot years every second year by 2030 in twice as many countries (92%) as without their influence (46%). If all world nations shared the same fossil CO2 per capita emissions as projected for the US from 2016–2030, global warming in 2030 would be 0.4 °C higher than under actual current pledges, and 75% of all countries would exceed 2 °C of regional warming instead of 11%. Our results highlight the responsibility of individual emitters in driving regional climate change and provide additional angles for the climate policy discourse.
  • Item
    A few extreme events dominate global interannual variability in gross primary production
    (Bristol : IOP Publishing, 2014) Zscheischle, Jakob; Mahecha, Miguel D.; von Buttlar, Jannis; Harmeling, Stefan; Jung, Martin; Rammig, Anja; Randerson, James T.; Schölkopf, Bernhard; Seneviratne, Sonia I.; Tomelleri, Enrico; Zaehle, Sönke; Reichstein, Markus
    Understanding the impacts of climate extremes on the carbon cycle is important for quantifying the carbon-cycle climate feedback and highly relevant to climate change assessments. Climate extremes and fires can have severe regional effects, but a spatially explicit global impact assessment is still lacking. Here, we directly quantify spatiotemporal contiguous extreme anomalies in four global data sets of gross primary production (GPP) over the last 30 years. We find that positive and negative GPP extremes occurring on 7% of the spatiotemporal domain explain 78% of the global interannual variation in GPP and a significant fraction of variation in the net carbon flux. The largest thousand negative GPP extremes during 1982–2011 (4.3% of the data) account for a decrease in photosynthetic carbon uptake of about 3.5 Pg C yr−1, with most events being attributable to water scarcity. The results imply that it is essential to understand the nature and causes of extremes to understand current and future GPP variability.