Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

A neutron diffraction study of crystal and low-temperature magnetic structures within the (Na,Li)FeGe2O6 pyroxene-type solid solution series

2017-5-12, Redhammer, Günther J., Senyshyn, Anatoliy, Lebernegg, Stefan, Tippelt, Gerold, Dachs, Edgar, Roth, Georg

Solid solution compounds along the Li1–x Na x FeGe2O6 clinopyroxene series have been prepared by solid state ceramic sintering and investigated by bulk magnetic and calorimetric methods; the Na-rich samples with x(Na) > 0.7 were also investigated by low-temperature neutron diffraction experiments in a temperature range of 4–20 K. For samples with x(Na) > 0.76 the crystal structure adopts the C2/c symmetry at all measuring temperatures, while the samples display P21/c symmetry for smaller Na contents. Magnetic ordering is observed for all samples below 20 K with a slight decrease of T N with increasing Na content. The magnetic spin structures change distinctly as a function of chemical composition: up to x(Na) = 0.72 the magnetic structure can be described by a commensurate arrangement of magnetic spins with propagation vector k = (½, 0 0), an antiferromagnetic (AFM) coupling within the Fe3+O6 octahedra zig-zag chains and an alternating AFM and ferromagnetic (FM) interaction between the chains, depending on the nature of the tetrahedral GeO4 chains. The magnetic structure can be described in magnetic space group P a21/c. Close to the structural phase transition for sample with x(Na) = 0.75, magnetic ordering is observed below 15 K; however, it becomes incommensurately modulated with k = (0.344, 0, 0.063). At 4 K, the magnetic spin structure best can be described by a cycloidal arrangement within the M1 chains, the spins are within the a–c plane. Around 12 K the cycloidal structure transforms to a spin density wave (SDW) structure. For the C2/c structures, a coexistence of a simple collinear and an incommensurately modulated structure is observed down to lowest temperatures. For 0.78 ≤ x(Na) ≤ 0.82, a collinear magnetic structure with k = (0 1 0), space group P C21/c and an AFM spin structure within the M1 chains and an FM one between the spins is dominating, while the incommensurately modulated structure becomes dominating the collinear one in the samples with x(Na) = 0.88. Here the magnetic propagation vector is k = (0.28, 1, 0.07) and the spin structure corresponds again to a cycloidal structure within the M1 chains. As for the other samples, a transition from the cycloidal to a SDW structure is observed. Based on the neutron diffraction data, the appearance of two peaks in the heat capacity of Na-rich samples can now be interpreted as a transition from a cycloidal magnetic structure to a spin density wave structure of the magnetically ordered phase for the Na-rich part of the solid solution series.

Loading...
Thumbnail Image
Item

TiNb2O7 and VNB9O25 of ReO3 type in hybrid Mg−Li batteries: Electrochemical and interfacial insights

2020, Maletti, Sebastian, Herzog-Arbeitman, Abraham, Oswald, Steffen, Senyshyn, Anatoliy, Giebeler, Lars, Mikhailova, Daria

As one of the beyond-lithium battery concepts, hybrid metal-ion batteries have aroused growing interest. Here, TiNb2O7 (TNO) and VNb9O25 (VNO) materials were prepared using a high-temperature solid-state synthesis and, for the first time, comprehensively examined in hybrid Mg−Li batteries. Both materials adopt ReO3-related structures differing in the interconnection of oxygen polyhedra and the resulting guest ion diffusion paths. We show applicability of the compounds in hybrid cells providing capacities comparable to those reached in Li-ion batteries (LIBs) at room temperature (220 mAh g−1 for TNO and 150 mAh g−1 for VNO, both at 0.1 C), their operability in the temperature range between −10 and 60 °C, and even better capacity retention than in pure LIBs, rendering this hybrid technology superior for long-term application. Post mortem X-ray photoelectron spectroscopy reveals a cathode−electrolyte interface as a key ingredient for providing excellent electrochemical stability of the hybrid battery. A significant contribution of the intercalation pseudocapacitance to charge storage was observed for both materials in Li- and Mg−Li batteries. However, the pseudocapacitive part is higher for TNO than for VNO, which correlates with structural distinctions, providing better accessibility of diffusion pathways for guest cations in TNO and, as a consequence, a higher ionic transport within the crystal structure. © 2020 American Chemical Society