Search Results

Now showing 1 - 5 of 5
  • Item
    Comprehensive characterization of osseous tissues from impedance measurements by effective medium approximation
    (New York, NY : American Inst. of Physics, 2021) Wei, Wenzuo; Shi, Fukun; Zhuang, Jie; Kolb, Juergen F.
    A unified mixing (UM) model was developed to derive microstructural information of trabecular bone, i.e., bone volume fraction (BV/TV), from electrical impedance spectroscopy. A distinct advantage of the UM-model over traditional methods, such as equivalent circuit models and multivariate analysis, is that the influence of both the environment (hydroxyapatite) and different inclusions (water, fat, and air) can be taken into account simultaneously. In addition, interactions between the different components such as interfacial polarization can be addressed by a dedicated fitting parameter v. Accordingly, values of BV/TV for different bone samples, e.g., including or not including water, were determined in the higher frequency range of 1-5 MHz. Results showed good agreement with experimental data obtained by micro-computer tomography. In particular, predictions for dielectric parameters that were derived for 3 and 4 MHz were found most promising for the assessment and distinction of osteopathic conditions and differences. This was shown by a clear differentiation of osseous tissues, e.g., the greater trochanter, femoral head, and femoral neck.
  • Item
    Uncertainty Quantification and Sensitivity Analysis for the Electrical Impedance Spectroscopy of Changes to Intercellular Junctions Induced by Cold Atmospheric Plasma
    (Basel : MDPI, 2022) Zhuang, Jie; Zhu, Cheng; Han, Rui; Steuer, Anna; Kolb, Juergen F.; Shi, Fukun
    The influence of pertinent parameters of a Cole-Cole model in the impedimetric assessment of cell-monolayers was investigated with respect to the significance of their individual contribution. The analysis enables conclusions on characteristics, such as intercellular junctions. Especially cold atmospheric plasma (CAP) has been proven to influence intercellular junctions which may become a key factor in CAP-related biological effects. Therefore, the response of rat liver epithelial cells (WB-F344) and their malignant counterpart (WB-ras) was studied by electrical impedance spectroscopy (EIS). Cell monolayers before and after CAP treatment were analyzed. An uncertainty quantification (UQ) of Cole parameters revealed the frequency cut-off point between low and high frequency resistances. A sensitivity analysis (SA) showed that the Cole parameters, R0 and α were the most sensitive, while Rinf and τ were the least sensitive. The temporal development of major Cole parameters indicates that CAP induced reversible changes in intercellular junctions, but not significant changes in membrane permeability. Sustained changes of τ suggested that long-lived ROS, such as H2O2, might play an important role. The proposed analysis confirms that an inherent advantage of EIS is the real time observation for CAP-induced changes on intercellular junctions, with a label-free and in situ method manner.
  • Item
    Discrimination of different cell monolayers before and after exposure to nanosecond pulsed electric fields based on Cole-Cole and multivariate analysis
    (Bristol : IOP Publ., 2019) Shi, Fukun; Zhuang, Jie; Kolb, Juergen F.
    Normal and cancer cells, which were grown in monolayers, were investigated and discriminated by electrical bioimpedance spectroscopy (EBIS) before and after exposures to nanosecond pulsed electric fields (nsPEFs). Bioimpedance data were analysed with a Cole-Cole model and the principal component analysis (PCA). Normal and cancer cells could be clearly distinguished from each other either from Cole parameters (R 0, a, t) or from two dominant principal components. The trend of changes for Cole parameters indicated distinctively different post-nsPEF-effects between normal and cancer cells. PCA was also able to distinguish characteristic impedance spectra 30 min after exposures. The first principal component suggested that post-nsPEF-effects for normal cells were revealed especially at lower frequencies. The results indicated further that the extracellular resistance, which is dominated by cell-cell connections, might be an important factor with respect to selective nsPEF-effects on cancer cells that are organized in a monolayer or a tissue, respectively. Accordingly, the results support the application of EBIS as an early, non-invasive, label-free, and time-saving approach for the classification of cells to provide in particular predictive information on the success of cancer treatments with nsPEFs. © 2019 IOP Publishing Ltd.
  • Item
    Impedimetric Analysis of Trabecular Bone Based on Cole and Linear Discriminant Analysis
    (Lausanne : Frontiers Media, 2021) Wei, Wenzuo; Shi, Fukun; Kolb, Juergen F.
    A spatially unambiguous characterization of electrical properties of osseous tissues is important for the therapy of osteopathy via electrical stimulation. Accordingly, the study aimed to characterize the highly inhomogeneous composition and structures of different anatomical regions of trabecular bone based on their electrical properties. The electrical properties of 64 porcine trabecular bone samples were analyzed in a parallel plate electrode configuration and compared with published results. Therefore, a novel method, combining traditional Cole model with a linear discriminant analysis (LDA), was developed to discriminate the different regions, i.e., femur head, greater trochanter, and femur neck. Possible mechanisms behind the distinction for different regions could be interpreted from both methods. Respective adjacent regions with similar structure and composition could be distinguished from statistically significant differences of Cole parameters, i.e., α (p < 0.01) and R∞ (p < 0.05). The latter was correlated especially with water content, indicating an association of individual differences in microstructures in particular with conductivity. Conversely, different regions were unambiguously discriminated with LDA based on permittivity or conductivity. Contributions to the discrimination were explicitly reflected by the coefficients of the derived LDA features. A clear distinction was obtained especially for a frequency response at 950 kHz. Moreover, predictions for the classification of unspecified samples assigned them correctly to their origin with a success of 92.9%. The combination of both methods offers the possibility for a spatially resolved and eventually patient specific discrimination and evaluation of bone tissues and their response to therapies, notably electrical stimulation.
  • Item
    Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole: PSS Hydrogels for Tissue Engineering
    (Weinheim : Wiley-VCH, 2021) Distler, Thomas; Polley, Christian; Shi, Fukun; Schneidereit, Dominik; Ashton, Mark D.; Friedrich, Oliver; Kolb, Jürgen F.; Hardy, John G.; Detsch, Rainer; Seitz, Hermann; Boccaccini, Aldo R.
    Electroactive hydrogels can be used to influence cell response and maturation by electrical stimulation. However, hydrogel formulations which are 3D printable, electroactive, cytocompatible, and allow cell adhesion, remain a challenge in the design of such stimuli-responsive biomaterials for tissue engineering. Here, a combination of pyrrole with a high gelatin-content oxidized alginate-gelatin (ADA-GEL) hydrogel is reported, offering 3D-printability of hydrogel precursors to prepare cytocompatible and electrically conductive hydrogel scaffolds. By oxidation of pyrrole, electroactive polypyrrole:polystyrenesulfonate (PPy:PSS) is synthesized inside the ADA-GEL matrix. The hydrogels are assessed regarding their electrical/mechanical properties, 3D-printability, and cytocompatibility. It is possible to prepare open-porous scaffolds via bioplotting which are electrically conductive and have a higher cell seeding efficiency in scaffold depth in comparison to flat 2D hydrogels, which is confirmed via multiphoton fluorescence microscopy. The formation of an interpenetrating polypyrrole matrix in the hydrogel matrix increases the conductivity and stiffness of the hydrogels, maintaining the capacity of the gels to promote cell adhesion and proliferation. The results demonstrate that a 3D-printable ADA-GEL can be rendered conductive (ADA-GEL-PPy:PSS), and that such hydrogel formulations have promise for cell therapies, in vitro cell culture, and electrical-stimulation assisted tissue engineering. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH