Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Divalent EuRh 2 Si 2 as a reference for the Luttinger theorem and antiferromagnetism in trivalent heavy-fermion YbRh 2 Si 2

2019, Güttler, M., Generalov, A., Fujimori, S.I., Kummer, K., Chikina, A., Seiro, S., Danzenbächer, S., Koroteev, Y.M., Chulkov, E.V., Radovic, M., Shi, M., Plumb, N.C., Laubschat, C., Allen, J.W., Krellner, C., Geibel, C., Vyalikh, D.V.

Application of the Luttinger theorem to the Kondo lattice YbRh 2 Si 2 suggests that its large 4f-derived Fermi surface (FS) in the paramagnetic (PM) regime should be similar in shape and volume to that of the divalent local-moment antiferromagnet (AFM) EuRh 2 Si 2 in its PM regime. Here we show by angle-resolved photoemission spectroscopy that paramagnetic EuRh 2 Si 2 has a large FS essentially similar to the one seen in YbRh 2 Si 2 down to 1 K. In EuRh 2 Si 2 the onset of AFM order below 24.5 K induces an extensive fragmentation of the FS due to Brillouin zone folding, intersection and resulting hybridization of the Fermi-surface sheets. Our results on EuRh 2 Si 2 indicate that the formation of the AFM state in YbRh 2 Si 2 is very likely also connected with similar changes in the FS, which have to be taken into account in the controversial analysis and discussion of anomalies observed at the quantum critical point in this system.

Loading...
Thumbnail Image
Item

Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2

2016, Güttler, M., Generalov, A., Otrokov, M.M., Kummer, K., Kliemt, K., Fedorov, A., Chikina, A., Danzenbächer, S., Schulz, S., Chulkov, E.V., Koroteev, Yu. M., Caroca-Canales, N., Shi, M., Radovic, M., Geibel, C., Laubschat, C., Dudin, P., Kim, T.K., Hoesch, M., Krellner, C., Vyalikh, D.V.

Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.

Loading...
Thumbnail Image
Item

High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

2015, Charnukha, A., Evtushinsky, D.V., Matt, C.E., Xu, N., Shi, M., Büchner, B., Zhigadlo, N.D., Batlogg, B., Borisenko, S.V.

In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.