Search Results

Now showing 1 - 2 of 2
  • Item
    Observation of the Ionosphere in Middle Latitudes during 2009, 2018 and 2018/2019 Sudden Stratospheric Warming Events
    (Basel : MDPI, 2021) Mošna, Zbyšek; Edemskiy, Ilya; Laštovička, Jan; Kozubek, Michal; Koucká Knížová, Petra; Kouba, Daniel; Siddiqui, Tarique Adnan
    The ionospheric weather is affected not only from above by the Sun but also from below by processes in the lower-lying atmospheric layers. One of the most pronounced atmospheric phenomena is the sudden stratospheric warming (SSW). Three major SSW events from the periods of very low solar activity during January 2009, February 2018, and December 2018/January 2019 were studied to evaluate this effect of the neutral atmosphere on the thermosphere and the ionosphere. The main question is to what extent the ionosphere responds to the SSW events with focus on middle latitudes over Europe. The source of the ionospheric data was ground-based measurements by Digisondes, and the total electron content (TEC). In all three events, the ionospheric response was demonstrated as an increase in electron density around the peak height of the F2 region, in TEC, and presence of wave activity. We presume that neutral atmosphere forcing and geomagnetic activity contributed differently in individual events. The ionospheric response during SSW 2009 was predominantly influenced by the neutral lower atmosphere. The ionospheric changes observed during 2018 and 2018/2019 SSWs are a combination of both geomagnetic and SSW forcing. The ionospheric response to geomagnetic forcing was noticeably lower during time intervals outside of SSWs. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Quasi‐10‐Day Wave and Semidiurnal Tide Nonlinear Interactions During the Southern Hemispheric SSW 2019 Observed in the Northern Hemispheric Mesosphere
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Chau, Jorge L.; Forbes, Jeffrey M.; Thorsen, Denise; Li, Guozhu; Siddiqui, Tarique Adnan; Yamazaki, Yosuke; Hocking, Wayne K.
    Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi-10- and 6-day planetary waves (Q10DW and Q6DW, m = 1), solar semidiurnal tides with m = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB, m = 1 and 3) of Q10DW-SW2 nonlinear interactions. We further present 7-year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley-Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW. © 2020. The Authors.