Search Results

Now showing 1 - 2 of 2
  • Item
    Financial Feasibility of Water Conservation in Agriculture
    (Hoboken, NJ : Wiley-Blackwell, 2021) Siderius, Christian; Biemans, Hester; Conway, Declan; Immerzeel, Walter; Jaegermeyr, Jonas; Ahmad, Bashir; Hellegers, Petra
    Global water use for food production needs to be reduced to remain within planetary boundaries, yet the financial feasibility of crucial measures to reduce water use is poorly quantified. Here, we introduce a novel method to compare the costs of water conservation measures with the added value that reallocation of water savings might generate if used for expansion of irrigation. Based on detailed water accounting through the use of a high-resolution hydrology-crop model, we modify the traditional cost curve approach with an improved estimation of demand and increasing marginal cost per water conservation measure combination, adding a correction to control for impacts on downstream water availability. We apply the method to three major river basins in the Indo-Gangetic plain (Indus, Ganges and Brahmaputra), a major global food producing region but increasingly water stressed. Our analysis shows that at basin level only about 10% (Brahmaputra) to just over 20% (Indus and Ganges) of potential water savings would be realized; the equilibrium price for water is too low to make the majority of water conservation measures cost effective. The associated expansion of irrigated area is moderate, about 7% in the Indus basin, 5% in the Ganges and negligible in the Brahmaputra, but farmers' gross profit increases more substantially, by 11%. Increasing the volumetric cost of irrigation water influences supply and demand in a similar way and has little influence on water reallocation. Controlling for the impact on return flows is important and more than halves the amount of water available for reallocation.
  • Item
    Multi-scale analysis of the water-energy-food nexus in the Gulf region
    (Bristol : IOP Publ., 2020) Siderius, Christian; Conway, Declan; Yassine, Mohamed; Murken, Lisa; Lostis, Pierre-Louis; Dalin, Carole
    We quantify the heavily oil-dominated WEF nexus in three Gulf Cooperation Council (GCC) countries (Kuwait, Qatar and Saudi Arabia) across spatial scales and over time, using available empirical data at the national level, and explore the exposure to nexus stresses (groundwater depletion) in other countries through virtual water trade. At the domestic scale, WEF trade-offs are fairly limited; while all sectors require considerable amounts of energy, the requirements for water and food production are modest compared to other uses. At the international scale, revenues from oil exports in the GCC allow the region to compensate for low food production and scarce water availability. This dependency is dynamic over time, increasing when oil prices are low and food prices are high. We show how reducing domestic trade-offs can lead to higher exposure internationally, with rice imports originating in regions where groundwater is being depleted. However, Saudi Arabia's increased wheat imports, after reversing its food self-sufficiency policy, have had limited effects on groundwater depletion elsewhere. Climate change mitigation links the WEF nexus to the global scale. While there is great uncertainty about future international climate policy, our analysis illustrates how implementation of measures to account for the social costs of carbon would reduce the oil and gas revenues available to import food and desalinate water in the GCC.