Search Results

Now showing 1 - 3 of 3
  • Item
    Aerosols-cloud microphysics-thermodynamics-turbulence: Evaluating supersaturation in a marine stratocumulus cloud
    (München : European Geopyhsical Union, 2012) Ditas, F.; Shaw, R.A.; Siebert, H.; Simmel, M.; Wehner, B.; Wiedensohler, A.
    This work presents a unique combination of aerosol, cloud microphysical, thermodynamic and turbulence variables to characterize supersaturation fluctuations in a turbulent marine stratocumulus (SC) layer. The analysis is based on observations with the helicopter-borne measurement platform ACTOS and a detailed cloud microphysical parcel model following three different approaches: (1) From the comparison of aerosol number size distributions inside and below the SC layer, the number of activated particles is calculated as 435±87 cm−3 and compares well with the observed median droplet number concentration of Nd = 464 cm−3. Furthermore, a 50% activation diameter of Dp50≈115 nm was derived, which was linked to a critical supersaturation Scrit of 0.16% via Köhler theory. From the shape of the fraction of activated particles, we estimated a standard deviation of supersaturation fluctuations of σS' = 0.09%. (2) These estimates are compared to more direct thermodynamic observations at cloud base. Therefore, supersaturation fluctuations (S') are calculated based on highly-resolved thermodynamic data showing a standard deviation of S' ranging within 0.1%≤σS'≤0.3 %. (3) The sensitivity of the supersaturation on observed vertical wind velocity fluctuations is investigated with the help of a detailed cloud microphysical model. These results show highest fluctuations of S' with σS'=0.1% at cloud base and a decreasing σS' with increasing liquid water content and droplet number concentration. All three approaches are independent of each other and vary only within a factor of about two.
  • Item
    The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: First applications in the cloudy Arctic boundary layer
    (Göttingen : Copernicus GmbH, 2019) Egerer, U.; Gottschalk, M.; Siebert, H.; Ehrlich, A.; Wendisch, M.
    The new BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) tethered balloon system is introduced. It combines a set of instruments to measure turbulent and radiative parameters and energy fluxes. BELUGA enables collocated measurements either at a constant altitude or as vertical profiles up to 1.5km in height. In particular, the instrument payload of BELUGA comprises three modular instrument packages for high-resolution meteorological, wind vector and broadband radiation measurements. Collocated data acquisition allows for estimates of the driving parameters in the energy balance at various heights. Heating rates and net irradiances can be related to turbulent fluxes and local turbulence parameters such as dissipation rates. In this paper the technical setup, the instrument performance, and the measurement strategy of BELUGA are explained. Furthermore, the high vertical resolution due to the slow ascent speed is highlighted as a major advantage of tethered balloon-borne observations. Three illustrative case studies of the first application of BELUGA in the Arctic atmospheric boundary layer are presented. As a first example, measurements of a single-layer stratocumulus are discussed. They show a pronounced cloud top radiative cooling of up to 6K h-1. To put this into context, a second case elaborates respective measurements with BELUGA in a cloudless situation. In a third example, a multilayer stratocumulus was probed, revealing reduced turbulence and negligible cloud top radiative cooling for the lower cloud layer. In all three cases the net radiative fluxes are much higher than turbulent fluxes. Altogether, BELUGA has proven its robust performance in cloudy conditions of the Arctic atmospheric boundary layer.
  • Item
    Observation of a Self-Limiting, Shear-Induced Turbulent Inversion Layer Above Marine Stratocumulus
    (Dordrecht [u.a.] : Springer, 2012) Katzwinkel, J.; Siebert, H.; Shaw, R.A.
    High-resolution measurements of thermodynamic, microphysical, and turbulence properties inside a turbulent inversion layer above a marine stratocumulus cloud layer are presented. The measurements are performed with the helicopter-towed measurement payload Airborne Cloud Turbulence Observation System (ACTOS), which allows for sampling with low true air speeds and steep profiles through cloud top. Vertical profiles show that the turbulent inversion layer consists of clear air above the cloud top, with nearly linear profiles of potential temperature, horizontal wind speed, absolute humidity, and concentration of interstitial aerosol. The layer is turbulent, with an energy dissipation rate nearly the same as that in the lower cloud, suggesting that the two are actively coupled, but with significant anisotropic turbulence at the large scales within the turbulent inversion layer. The turbulent inversion layer is traversed six times and the layer thickness is observed to vary between 37 and 85 m, whereas the potential temperature and horizontal wind speed differences at the top and bottom of the layer remain essentially constant. The Richardson number therefore increases with increasing layer thickness, from approximately 0. 2 to 0. 7, suggesting that the layer develops to the point where shear production of turbulence is sufficiently weak to be balanced by buoyancy suppression. This picture is consistent with prior numerical simulations of the evolution of turbulence in localized stratified shear layers. It is observed that the large eddy scale is suppressed by buoyancy and is on the order of the Ozmidov scale, much less than the thickness of the turbulent inversion layer, such that direct mixing between the cloud top and the free troposphere is inhibited, and the entrainment velocity tends to decrease with increasing turbulent inversion-layer thickness. Qualitatively, the turbulent inversion layer likely grows through nibbling rather than engulfment.