Search Results

Now showing 1 - 5 of 5
  • Item
    CAMP: An instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
    (Katlenburg-Lindau : Copernicus, 2022) Pilz, Christian; Düsing, Sebastian; Wehner, Birgit; Müller, Thomas; Siebert, Holger; Voigtländer, Jens; Lonardi, Michael
    Airborne observations of vertical aerosol particle distributions are crucial for detailed process studies and model improvements. Tethered balloon systems represent a less expensive alternative to aircraft to probe shallow atmospheric boundary layers (ABLs). This study presents the newly developed cubic aerosol measurement platform (CAMP) for balloon-borne observations of aerosol particle microphysical properties. With an edge length of 35 cm and a weight of 9 kg, the cube is an environmentally robust instrument platform intended for measurements at low temperatures, with a particular focus on applications in cloudy Arctic ABLs. The aerosol instrumentation on board CAMP comprises two condensation particle counters with different lower detection limits, one optical particle size spectrometer, and a miniaturized absorption photometer. Comprehensive calibrations and characterizations of the instruments were performed in laboratory experiments. The first field study with a tethered balloon system took place at the Leibniz Institute for Tropospheric Research (TROPOS) station in Melpitz, Germany, in the winter of 2019. At ambient temperatures between-8 and 15 C, the platform was operated up to a 1.5 km height on 14 flights under both clear-sky and cloudy conditions. The continuous aerosol observations at the ground station served as a reference for evaluating the CAMP measurements. Exemplary profiles are discussed to elucidate the performance of the system and possible process studies. Based on the laboratory instrument characterizations and the observations during the field campaign, CAMP demonstrated the capability to provide comprehensive aerosol particle measurements in cold and cloudy ABLs.
  • Item
    A DNS study of aerosol and small-scale cloud turbulence interaction
    (München : European Geopyhsical Union, 2016) Babkovskaia, Natalia; Rannik, Ullar; Phillips, Vaughan; Siebert, Holger; Wehner, Birgit; Boy, Michael
    The purpose of this study is to investigate the interaction between small-scale turbulence and aerosol and cloud microphysical properties using direct numerical simulations (DNS). We consider the domain located at the height of about 2000 m from the sea level, experiencing transient high supersaturation due to atmospheric fluctuations of temperature and humidity. To study the effect of total number of particles (Ntot) on air temperature, activation and supersaturation, we vary Ntot. To investigate the effect of aerosol dynamics on small-scale turbulence and vertical air motion, we vary the intensity of turbulent fluctuations and the buoyant force. We find that even a small number of aerosol particles (55.5 cm−3), and therefore a small droplet number concentration, strongly affects the air temperature due to release of latent heat. The system comes to an equilibrium faster and the relative number of activated particles appears to be smaller for larger Ntot. We conclude that aerosol particles strongly affect the air motion. In a case of updraught coursed by buoyant force, the presence of aerosol particles results in acceleration of air motion in vertical direction and increase of turbulent fluctuations.
  • Item
    Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements
    (Katlenburg-Lindau : EGU, 2018) Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas
    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe. The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties. In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for different altitudes were determined using the airborne in situ measurements and were compared with the lidar measurements. The investigation of the optical properties shows that on average the airborne-based particle light backscatter coefficient is 50.1 % smaller for 1064 nm, 27.4 % smaller for 532 nm, and 29.5 % smaller for 355 nm than the measurements of the lidar system. These results are quite promising, since in situ measurement-based Mie calculations of the particle light backscattering are scarce and the modeling is quite challenging. In contrast, for the particle light extinction coefficient we found a good agreement. The airborne-based particle light extinction coefficient was just 8.2 % larger for 532 nm and 3 % smaller for 355 nm, for an assumed LR of 55 sr. The particle light extinction coefficient for 1064 nm was derived with a LR of 30 sr. For this wavelength, the airborne-based particle light extinction coefficient is 5.2 % smaller than the lidar measurements. For the first time, the lidar ratio of 30 sr for 1064 nm was determined on the basis of in situ measurements and the LR of 55 sr for 355 and 532 nm wavelength was reproduced for European continental aerosol on the basis of this comparison. Lidar observations and the in situ based aerosol optical properties agree within the uncertainties. However, our observations indicate that a determination of the PNSD for a large size range is important for a reliable modeling of aerosol particle backscattering.
  • Item
    The HD(CP)2 Observational Prototype Experiment (HOPE) - An overview
    (Katlenburg-Lindau : EGU, 2017) Macke, Andreas; Seifert, Patric; Baars, Holger; Barthlott, Christian; Beekmans, Christoph; Behrendt, Andreas; Bohn, Birger; Brueck, Matthias; Bühl, Johannes; Crewell, Susanne; Damian, Thomas; Deneke, Hartwig; Düsing, Sebastian; Foth, Andreas; Di Girolamo, Paolo; Hammann, Eva; Heinze, Rieke; Hirsikko, Anne; Kalisch, John; Kalthoff, Norbert; Kinne, Stefan; Kohler, Martin; Löhnert, Ulrich; Madhavan, Bomidi Lakshmi; Maurer, Vera; Muppa, Shravan Kumar; Schween, Jan; Serikov, Ilya; Siebert, Holger; Simmer, Clemens; Späth, Florian; Steinke, Sandra; Träumner, Katja; Trömel, Silke; Wehner, Birgit; Wieser, Andreas; Wulfmeyer, Volker; Xie, Xinxin
    The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface-atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns.

    HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface.

    HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10 × 10 × 10km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal.

    First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective.
  • Item
    Horizontal homogeneity and vertical extent of new particle formation events
    (Milton Park : Taylor & Francis, 2017) Wehner, Birgit; Siebert, Holger; Stratmann, Frank; Tuch, Thomas; Wiedensohler, Alfred; PetäJä, Tuukka; Dal Maso, Miikka; Kulmala, Markku
    During the SATURN campaign 2002, new particle formation, i.e. the occurrence of ultrafine particles was investigated simultaneously at four ground-based measurement sites. The maximum distance between the sites was 50 km. Additionally, vertical profiles of aerosol particles from 5–10 nm have been measured by a tethered-balloonborne system at one of the sites. In general, two different scenarios have been found: (i) new particle formation was measured at all sites nearly in parallel with subsequent particle growth (homogeneous case) and (ii) new particle formation was observed at one to three sites irregularly (inhomogeneous case) where subsequent particle growth was often interrupted. The homogeneous case was connected with stable synoptical conditions, i.e. the region was influenced by a high pressure system. Here, the horizontal extent of the phenomenon has been estimated to be 400 km at maximum. In the vertical dimension, the ultrafine particles are well mixed within the entire boundary layer. In the inhomogeneous case the new particle formation depends mainly on the incoming solar radiation and was often interrupted due the occurrence of clouds. Thus, single point measurements are not representative for a larger region in that case.