Search Results

Now showing 1 - 2 of 2
  • Item
    One-Pot Synthesis of Copper Iodide-Polypyrrole Nanocomposites
    (Basel : MDPI, 2021) Konakov, Artem O.; Dremova, Nadejda N.; Khodos, Igor I.; Koch, Marcus; Zolotukhina, Ekaterina V.; Silina, Yuliya
    A novel one-pot chemical synthesis of functional copper iodide-polypyrrole composites, CuI-PPy, has been proposed. The fabrication process allows the formation of nanodimensional metal salt/polymer hybrid structures in a fully controlled time- and concentration-dependent manner. The impact of certain experimental conditions, viz., duration of synthesis, sequence of component addition and concentrations of the intact reagents on the structure, dimensionality and yield of the end-product was evaluated in detail. More specifically, the amount of marshite CuI within the hybrid composite can be ranged from 60 to 90 wt.%, depending on synthetic conditions (type and concentration of components, process duration). In addition, the conditions allowing the synthesis of nano-sized CuI distributed inside the polypyrrole matrix were found. A high morphological stability and reproducibility of the synthesized nanodimensional metal-polymer hybrid materials were approved. Finally, the electrochemical activity of the formed composites was verified by cyclic voltammetry studies. The stability of CuI-PPy composite deposited on the electrodes was strongly affected by the applied anodic limit. The proposed one-pot synthesis of the hybrid nanodimensional copper iodide-polypyrrole composites is highly innovative, meets the requirements of Green Chemistry and is potentially useful for future biosensor development. In addition, this study is expected to generally contribute to the knowledge on the hybrid nano-based composites with tailored properties.
  • Item
    Penetration of CdSe/ZnS quantum dots into differentiated vs undifferentiated Caco-2 cells
    (London : BioMed Central, 2016) Peuschel, Henrike; Ruckelshausen, Thomas; Kiefer, Silke; Silina, Yuliya; Kraegeloh, Annette
    Background: Quantum dots (QDs) have great potential as fluorescent labels but cytotoxicity relating to extra- and intracellular degradation in biological systems has to be addressed prior to biomedical applications. In this study, human intestinal cells (Caco-2) grown on transwell membranes were used to study penetration depth, intracellular localization, translocation and cytotoxicity of CdSe/ZnS QDs with amino and carboxyl surface modifications. The focus of this study was to compare the penetration depth of QDs in differentiated vs undifferentiated cells using confocal microscopy and image processing. Results: Caco-2 cells were exposed to QDs with amino (NH2) and carboxyl (COOH) surface groups for 3 days using a concentration of 45 μg cadmium ml−1. Image analysis of confocal/multiphoton microscopy z-stacks revealed no penetration of QDs into the cell lumen of differentiated Caco-2 cells. Interestingly, translocation of cadmium ions onto the basolateral side of differentiated monolayers was observed using high resolution inductively coupled plasma mass spectrometry (ICP-MS). Membrane damage was neither detected after short nor long term incubation in Caco-2 cells. On the other hand, intracellular localization of QDs after exposure to undifferentiated cells was observed and QDs were partially located within lysosomes. Conclusions: In differentiated Caco-2 monolayers, representing a model for small intestinal enterocytes, no penetration of amino and carboxyl functionalized CdSe/ZnS QDs into the cell lumen was detected using microscopy analysis and image processing. In contrast, translocation of cadmium ions onto the basolateral side could be detected using ICP-MS. However, even after long term incubation, the integrity of the cell monolayer was not impaired and no cytotoxic effects could be detected. In undifferentiated Caco-2 cells, both QD modifications could be found in the cell lumen. Only to some extend, QDs were localized in endosomes or lysosomes in these cells. The results indicate that the differentiation status of Caco-2 cells is an important factor in internalization and localization studies using Caco-2 cells. Furthermore, a combination of microscopy analysis and sensitive detection techniques like ICP-MS are necessary for studying the interaction of cadmium containing QDs with cells.