Search Results

Now showing 1 - 10 of 11
  • Item
    On the longitudinal structure of the transient day-to-day variation of the semidiurnal tide in the mid-latitude lower thermosphere - I. Winter season
    (München : European Geopyhsical Union, 2001) Merzlyakov, E.G.; Portnyagin, Yu.I.; Jacobi, C.; Mitchell, N.J.; Muller, H.G.; Manson, A.H.; Fachrutdinova, A.N.; Singer, W.; Hoffmann, P.
    The longitudinal structure of the day-to-day variations of semidiurnal tide amplitudes is analysed based on coordinated mesosphere/lower thermosphere wind measurements at several stations during three winter campaigns. Possible excitation sources of these variations are discussed. Special attention is given to a nonlinear interaction between the semidiurnal tide and the day-to-day mean wind variations. Data processing includes the S-transform analysis which takes into account transient behaviour of secondary waves. It is shown that strong tidal modulations appear during a stratospheric warming and may be caused by aperiodic mean wind variations during this event.
  • Item
    Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part II: Radar investigations and modelling studies
    (München : European Geopyhsical Union, 2006) Serafimovich, A.; Zülicke, Ch.; Hoffmann, P.; Peters, D.; Dalin, P.; Singer, W.
    We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.
  • Item
    Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign
    (München : European Geopyhsical Union, 2006) Nielsen, K.; Taylor, M.J.; Pautet, P.-D.; Fritts, D.C.; Mitchell, N.; Beldon, C.; Williams, B.P.; Singer, W.; Schmidlin, F.J.; Goldberg, R.A.
    As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically) winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27–31 January 2003. Coincident wind measurements over the altitude range (~80–100 km) using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted). Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.
  • Item
    Infrasound - The cause of strong Polar Mesosphere Winter Echoes?
    (München : European Geopyhsical Union, 2006) Kirkwood, S.; Chilson, P.; Belova, E.; Dalin, P.; Häggström, I.; Rietveld, M.; Singer, W.
    The ESRAD 52-MHz and the EISCAT 224-MHz radars in northern Scandinavia observed thin layers of strongly enhanced radar echoes from the mesosphere (Polar Mesosphere Winter Echoes - PMWE) during a solar proton event in November 2004. Using the interferometric capabilities of ESRAD it was found that the scatterers responsible for PMWE show very high horizontal travel speeds, up to 500 ms-1 or more, and high aspect sensitivity, with echo arrival angles spread over as little as 0.3°. ESRAD also detected, on some occasions, discrete scattering regions moving across the field of view with periodicities of a few seconds. The very narrow, vertically directed beam of the more powerful EISCAT radar allowed measurements of the spectral widths of the radar echoes both inside the PMWE and from the background plasma above and below the PMWE. Spectral widths inside the PMWE were found to be indistinguishable from those from the background plasma. We propose that scatter from highly-damped ion-acoustic waves generated by partial reflection of infrasonic waves provides a reasonable explanation of the characteristics of the very strong PMWE reported here.
  • Item
    Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002
    (Göttingen : Copernicus GmbH, 2005) Engler, N.; Latteck, R.; Strelnikov, B.; Singer, W.; Rapp, M.
    During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100 m Wkg-1 in the altitude range of 80-92 km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.
  • Item
    A case study of gravity waves in noctilucent clouds
    (München : European Geopyhsical Union, 2004) Dalin, P.; Kirkwood, S.; Moström, A.; Stebel, K.; Hoffmann, P.; Singer, W.
    We present a case study of a noctilucent cloud (NLC) display appearing on 10-11 August 2000 over Northern Sweden. Clear wave structures were visible in the clouds and time-lapse photography was used to derive the parameters characterising the gravity waves which could account for the observed NLC modulation. Using two nearby atmospheric radars, the Esrange MST Radar data and Andoya MF radar, we have identified gravity waves propagating upward from the upper stratosphere to NLC altitudes. The wave parameters derived from the radar measurements support the suggestion that gravity waves are responsible for the observed complex wave dynamics in the NLC.
  • Item
    Monthly mean climatology of the prevailing winds and tides in the Artic mesosphere/lower thermosphere
    (München : European Geopyhsical Union, 2004) Portnyagin, Y.I.; Solovjova, T.V.; Makarov, N.A.; Merzlyakov, E.G.; Manson, A.H.; Meek, C.E.; Hocking, W.; Mitchell, N.; Pancheva, D.; Hoffmann, P.; Singer, W.; Murayama, Y.; Igarashi, K.; Forbes, J.M.; Palo, S.; Hall, C.; Nozawa, S.
    The Arctic MLT wind regime parameters measured at the ground-based network of MF and meteor radar stations (Andenes 69° N, Tromsø 70° N, Esrange 68° N, Dixon 73.5° N, Poker Flat 65° N and Resolute Bay 75° N) are discussed and compared with those observed in the mid-latitudes. The network of the ground-based MF and meteor radars for measuring winds in the Arctic upper mesosphere and lower thermosphere provides an excellent opportunity for study of the main global dynamical structures in this height region and their dependence from longitude. Preliminary estimates of the differences between the measured winds and tides from the different radar types, situated 125-273km apart (Tromsø, Andenes and Esrange), are provided. Despite some differences arising from using different types of radars it is possible to study the dynamical wind structures. It is revealed that most of the observed dynamical structures are persistent from year to year, thus permitting the analysis of the Arctic MLT dynamics in a climatological sense. The seasonal behaviour of the zonally averaged wind parameters is, to some extent, similar to that observed at the moderate latitudes. However, the strength of the winds (except the prevailing meridional wind and the diurnal tide amplitudes) in the Arctic MLT region is, in general, less than that detected at the moderate latitudes, decreasing toward the pole. There are also some features in the vertical structure and seasonal variations of the Arctic MLT winds which are different from the expectations of the well-known empirical wind models CIRA-86 and HWM-93. The tidal phases show a very definite longitudinal dependence that permits the determination of the corresponding zonal wave numbers. It is shown that the migrating tides play an important role in the dynamics of the Arctic MLT region. However, there are clear indications with the presence in some months of non-migrating tidal modes of significant appreciable amplitude.
  • Item
    Mesopause dynamics from the Scandinavian triangle of radars within the PSMOS-DATAR project
    (München : European Geopyhsical Union, 2004) Manson, A.H.; Meek, C.E.; Hall, C.M.; Nozawa, S.; Mitchell, N.J.; Pancheva, D.; Singer, W.; Hoffmann, P.
    The "Scandinavian Triangle" is a unique trio of radars within the DATAR Project (Dynamics and Temperatures from the Arctic MLT (60–97km) region): Andenes MF radar (69°N, 16°E); Tromsø MF radar (70°N, 19°E) and Esrange "Meteor" radar (68°N, 21°E). The radar-spacings range from 125-270km, making it unique for studies of wind variability associated with small-scale waves, comparisons of large-scale waves measured over small spacings, and for comparisons of winds from different radar systems. As such it complements results from arrays having spacings of 25km and 500km that have been located near Saskatoon. Correlation analysis is used to demonstrate a speed bias (MF smaller than the Meteor) between the radar types, which varies with season and altitude. Annual climatologies for the year 2000 of mean winds, solar tides, planetary and gravity waves are presented, and show indications of significant spatial variability across the Triangle and of differences in wave characteristics from middle latitudes.
  • Item
    Diurnal and annual variations of meteor rates at the arctic circle
    (München : European Geopyhsical Union, 2004) Singer, W.; von Zahn, U.; Weiß, J.
    Meteors are an important source for (a) the metal atoms of the upper atmosphere metal layers and (b) for condensation nuclei, the existence of which are a prerequisite for the formation of noctilucent cloud particles in the polar mesopause region. For a better understanding of these phenomena, it would be helpful to know accurately the annual and diurnal variations of meteor rates. So far, these rates have been little studied at polar latitudes. Therefore we have used the 33 MHz meteor radar of the ALOMAR observatory at 69° N to measure the meteor rates at this location for two full annual cycles. This site, being within 3° of the Arctic circle, offers in addition an interesting capability: The axis of its antenna field points (almost) towards the North ecliptic pole once each day of the year. In this particular viewing direction, the radar monitors the meteoroid influx from (almost) the entire ecliptic Northern hemisphere. We report on the observed diurnal variations (averaged over one month) of meteor rates and their significant alterations throughout the year. The ratio of maximum over minimum meteor rates throughout one diurnal cycle is in January and February about 5, from April through December 2.3±0.3. If compared with similar measurements at mid-latitudes, our expectation, that the amplitude of the diurnal variation is to decrease towards the North pole, is not really borne out. Observations with the antenna axis pointing towards the North ecliptic pole showed that the rate of deposition of meteoric dust is substantially larger during the Arctic NLC season than the annual mean deposition rate. The daylight meteor showers of the Arietids, Zeta Perseids, and Beta Taurids supposedly contribute considerably to the June maximum of meteor rates. We note, though, that with the radar antenna pointing as described above, all three meteor radiants are close to the local horizon but all three radiants were detected.
  • Item
    Rocket measurements of positive ions during polar mesosphere winter echo conditions
    (München : European Geopyhsical Union, 2006) Brattli, A.; Blix, T.A.; Lie-Svendsen, Ø.; Hoppe, U.-P.; Lübken, F.-J.; Rapp, M.; Singer, W.; Latteck, R.; Friedrich, M.
    On 18 January 2005, two small, instrumented rockets were launched from Andøya Rocket Range (69.3° N, 16° E) during conditions with Polar Mesosphere Winter Echoes (PMWE). Each of the rockets was equipped with a Positive Ion Probe (PIP) and a Faraday rotation/differential absorption experiment, and was launched as part of a salvo of meteorological rockets measuring temperature and wind using falling spheres and chaff. Layers of PMWE were detected between 55 and 77 km by the 53.5 MHz ALWIN radar. The rockets were launched during a solar proton event, and measured extremely high ion densities, of order 1010 m−3, in the region where PMWE were observed. The density measurements were analyzed with the wavelet transform technique. At large length scales, ~103 m, the power spectral density can be fitted with a k−3 wave number dependence, consistent with saturated gravity waves. Outside the PMWE layers the k−3 spectrum extends down to approximately 102 m where the fluctuations are quickly damped and disappear into the instrumental noise. Inside the PMWE layers the spectrum at smaller length scales is well fitted with a k−5/3 dependence over two decades of scales. The PMWE are therefore clearly indicative of turbulence, and the data are consistent with the turbulent dissipation of breaking gravity waves. We estimate a lower limit for the turbulent energy dissipation rate of about 10−2 W/kg in the upper (72 km) layer.