Search Results

Now showing 1 - 3 of 3
  • Item
    Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part II: Radar investigations and modelling studies
    (München : European Geopyhsical Union, 2006) Serafimovich, A.; Zülicke, Ch.; Hoffmann, P.; Peters, D.; Dalin, P.; Singer, W.
    We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.
  • Item
    Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004
    (München : European Geopyhsical Union, 2008) Pancheva, D.; Mukhtarov, P.; Mitchell, N.J.; Andonov, B.; Merzlyakov, E.; Singer, W.; Murayama, Y.; Kawamura, S.; Xiong, J.; Wan, W.; Hocking, W.; Fritts, D.; Riggin, D.; Meek, C.; Manson, A.
    The coupling of the dynamical regimes in the high- and low-latitude stratosphere and mesosphere during the major SSW in the Arctic winter of 2003/2004 has been studied. The UKMO zonal wind data were used to explore the latitudinal coupling in the stratosphere, while the coupling in the mesosphere was investigated by neutral wind measurements from eleven radars situated at high, high-middle and tropical latitudes. It was found that the inverse relationship between the variability of the zonal mean flows at high- and low-latitude stratosphere related to the SSW is produced by global-scale zonally symmetric waves. Their origin and other main features have been investigated in detail. Similar latitudinal dynamical coupling has been found for the mesosphere as well. Indirect evidence for the presence of zonally symmetric waves in the mesosphere has been found.
  • Item
    Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007
    (München : European Geopyhsical Union, 2008) Belova, A.; Kirkwood, S.; Murtagh, D.; Mitchell, N.; Singer, W.; Hocking, W.
    A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE) at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005) that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration) using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.