Search Results

Now showing 1 - 2 of 2
  • Item
    Spectrometer‐free Optical Hydrogen Sensing Based on Fano‐like Spatial Distribution of Transmission in a Metal−Insulator−Metal Plasmonic Doppler Grating
    (Weinheim : Wiley-VCH, 2021) Chen, Yi‐Ju; Lin, Fan‐Cheng; Singh, Ankit Kumar; Ouyang, Lei; Huang, Jer‐Shing
    Optical nanosensors are promising for hydrogen sensing because they are small, free from spark generation, and feasible for remote optical readout. Conventional optical nanosensors require broadband excitation and spectrometers, rendering the devices bulky and complex. An alternative is spatial intensity-based optical sensing, which only requires an imaging system and a smartly designed platform to report the spatial distribution of analytical optical signals. Here, a spatial intensity-based hydrogen sensing platform is presented based on Fano-like spatial distribution of the transmission in a Pd-Al2O3-Au metal-insulator-metal plasmonic Doppler grating (MIM-PDG). The MIM-PDG manifests the Fano resonance as an asymmetric spatial transmission intensity profile. The absorption of hydrogen changes the spatial Fano-like transmission profiles, which can be analyzed with a “spatial” Fano resonance model and the extracted Fano resonance parameters can be used to establish analytical calibration lines. While gratings sensitive to hydrogen absorption are suitable for hydrogen sensing, hydrogen insensitive gratings are also found, which provide an unperturbed reference signal and may find applications in nanophotonic devices that require a stable optical response under fluctuating hydrogen atmosphere. The MIM-PDG platform is a spectrometer-free and intensity-based optical sensor that requires only an imaging system, making it promising for cellphone-based optical sensing applications. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH.
  • Item
    Signal and noise analysis for chiral structured illumination microscopy
    (Washington, DC : Optical Society of America, OSA, 2021) Huang, Shiang-Yu; Singh, Ankit Kumar; Huang, Jer-Shing
    Recently, chiral structured illumination microscopy has been proposed to image fluorescent chiral domains at sub-wavelength resolution. Chiral structured illumination microscopy is based on the combination of structured illumination microscopy, fluorescence-detected circular dichroism, and optical chirality engineering. Since circular dichroism of natural chiral molecules is typically weak, the differential fluorescence is also weak and can be easily buried by the noise, hampering the fidelity of the reconstructed images. In this work, we systematically study the impact of the noise on the quality and resolution of chiral domain images obtained by chiral SIM. We analytically describe the signal-to-noise ratio of the reconstructed chiral SIM image in the Fourier domain and verify our theoretical calculations with numerical demonstrations. Accordingly, we discuss the feasibility of chiral SIM in different experimental scenarios and propose possible strategies to enhance the signal-to-noise ratio for samples with weak circular dichroism.