Search Results

Now showing 1 - 2 of 2
  • Item
    Some inverse problems arising from elastic scattering by rigid obstacles
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Hu, Guanghui; Kirsch, Andreas; Sini, Mourad
    In the first part, it is proved that a C2-regular rigid scatterer in R3 can be uniquely identified by the shear part (i.e. S-part) of the far-field pattern corresponding to all incident shear waves at any fixed frequency. The proof is short and it is based on a kind of decoupling of the S-part of scattered wave from its pressure part (i.e. P-part) on the boundary of the scatterer. Moreover, uniqueness using the S-part of the far-field pattern corresponding to only one incident plane shear wave holds for a ball or a convex Lipschitz polyhedron. In the second part, we adapt the factorization method to recover the shape of a rigid body from the scattered S-waves (resp. P-waves) corresponding to all incident plane shear (resp. pressure) waves. Numerical examples illustrate the accuracy of our reconstruction in R2. In particular, the factorization method also leads to some uniqueness results for all frequencies excluding possibly a discrete set.
  • Item
    Direct and inverse acoustic scattering by a collection of extended and point-like scatterers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hu, Guanghui; Mantile, Andreas; Sini, Mourad
    We are concerned with the acoustic scattering by an extended obstacle surrounded by point-like obstacles. The extended obstacle is supposed to be rigid while the point-like obstacles are modeled by point perturbations of the exterior Laplacian. In the first part, we consider the forward problem. Following two equivalent approaches (the Foldy formal method and the Krein resolvent method), we show that the scattered field is a sum of two contributions: one is due to the diffusion by the extended obstacle and the other arises from the linear combination of the interactions between the point-like obstacles and the interaction between the point-like obstacles with the extended one. In the second part, we deal with the inverse problem. It consists in reconstructing both the extended and point-like scatterers from the corresponding far-field pattern. To solve this problem, we describe and justify the factorization method of Kirsch. Using this method, we provide several numerical results and discuss the multiple scattering effect concerning both the interactions between the point-like obstacles and between these obstacles and the extended one.