Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released during the Biodegradation of Porous Silicon Nanowires

2019, Gongalsky, Maxim, Gvindzhiliia, Georgii, Tamarov, Konstantin, Shalygina, Olga, Pavlikov, Alexander, Solovyev, Valery, Kudryavtsev, Andrey, Sivakov, Vladimir, Osminkina, Liubov A.

The radiofrequency (RF) mild hyperthermia effect sensitized by biodegradable nanoparticles is a promising approach for therapy and diagnostics of numerous human diseases including cancer. Herein, we report the significant enhancement of local destruction of cancer cells induced by RF hyperthermia in the presence of degraded low-toxic porous silicon (PSi) nanowires (NWs). Proper selection of RF irradiation time (10 min), intensity, concentration of PSi NWs, and incubation time (24 h) decreased cell viability to 10%, which can be potentially used for cancer treatment. The incubation for 24 h is critical for degradation of PSi NWs and the formation of silicic acid ions H+ and H3SiO4- in abundance. The ions drastically change the solution conductivity in the vicinity of PSi NWs, which enhances the absorption of RF radiation and increases the hyperthermia effect. The high biodegradability and efficient photoluminescence of PSi NWs were governed by their mesoporous structure. The average size of pores was 10 nm, and the sizes of silicon nanocrystals (quantum dots) were 3-5 nm. Degradation of PSi NWs was observed as a significant decrease of optical absorbance, photoluminescence, and Raman signals of PSi NW suspensions after 24 h of incubation. Localization of PSi NWs at cell membranes revealed by confocal microscopy suggested that thermal poration of membranes could cause cell death. Thus, efficient photoluminescence in combination with RF-induced cell membrane breakdown indicates promising opportunities for theranostic applications of PSi NWs. © 2019 American Chemical Society.

Loading...
Thumbnail Image
Item

Comparative Analysis of Raman Signal Amplifying Effectiveness of Silver Nanostructures with Different Morphology

2022, Yakimchuk, Dzmitry V., Khubezhov, Soslan A., Prigodich, Uladzislau V., Tishkevich, Daria I., Trukhanov, Sergei V., Trukhanov, Alex V., Sivakov, Vladimir, Kaniukov, Egor Y.

To increase the attractiveness of the practical application of molecular sensing methods, the experimental search for the optimal shape of silver nanostructures allowing to increase the Raman cross section by several orders of magnitude is of great interest. This paper presents a detailed study of spatially separated plasmon-active silver nanostructures grown in SiO2/Si template pores with crystallite, dendrite, and “sunflower-like” nanostructures shapes. Nile blue and 2-mercaptobenzothiazole were chosen as the model analytes for comparative evaluation of the Raman signal amplification efficiency using these structures. It was discussed the features of the structures for the enhancement of Raman intensity. Finally, we showed that silver crystals, dendrites, and “sunflower-like” nanostructures in SiO2/Si template could be used as the relevant materials for Raman signal amplification, but with different efficiency.

Loading...
Thumbnail Image
Item

Spectromicroscopy Studies of Silicon Nanowires Array Covered by Tin Oxide Layers

2023, Turishchev, Sergey, Schleusener, Alexander, Chuvenkova, Olga, Parinova, Elena, Liu, Poting, Manyakin, Maxim, Kurganskii, Sergei, Sivakov, Vladimir

The composition and atomic and electronic structure of a silicon nanowire (SiNW) array coated with tin oxide are studied at the spectromicroscopic level. SiNWs are covered from top to down with a wide bandgap tin oxide layer using a metal–organic chemical vapor deposition technique. Results obtained via scanning electron microscopy and X-ray diffraction showed that tin-oxide nanocrystals, 20 nm in size, form a continuous and highly developed surface with a complex phase composition responsible for the observed electronic structure transformation. The “one spot” combination, containing a chemically sensitive morphology and spectroscopic data, is examined via photoemission electron microscopy in the X-ray absorption near-edge structure spectroscopy (XANES) mode. The observed spectromicroscopy results showed that the entire SiNW surface is covered with a tin(IV) oxide layer and traces of tin(II) oxide and metallic tin phases. The deviation from stoichiometric SnO2 leads to the formation of the density of states sub-band in the atop tin oxide layer bandgap close to the bottom of the SnO2 conduction band. These observations open up the possibility of the precise surface electronic structures estimation using photo-electron microscopy in XANES mode.

Loading...
Thumbnail Image
Item

Thermally induced evolution of the structure and optical properties of silicon nanowires

2020, Mussabek, Gauhar, Lysenko, Vladimir, Yermukhamed, Dana, Sivakov, Vladimir, Yu. Timoshenko, Victor

In the present paper, we report on the investigation of thermal annealing (TA) effect on structural and optical properties of crystalline silicon nanowires produced by metal-assisted chemical etching approach. In particular, the impact of TA on nanowire length, relative volume and size distribution of voids is described in terms of Lifshitz-Slyozov-Wagner theory considering the TA induced Oswald ripening in the SiNW arrays. It was also found that TA leads to a decrease of the SiNWs total reflection in the wide UV–VIS-IR spectral range. The reported effects can be used for tuning of crystalline SiNWs arrays in view of their further applications in photonics related fields. © 2020 The Authors

Loading...
Thumbnail Image
Item

Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry

2016, Gonchar, Kirill A., Zubairova, Alsu A., Schleusener, Alexander, Osminkina, Liubov A., Sivakov, Vladimir

Silicon nanowires (SiNWs) were fabricated by metal-assisted chemical etching (MACE) where hydrofluoric acid (HF), which is typically used in this method, was changed into ammonium fluoride (NH4F). The structure and optical properties of the obtained SiNWs were investigated in details. The length of the SiNW arrays is about 2 μm for 5 min of etching, and the mean diameter of the SiNWs is between 50 and 200 nm. The formed SiNWs demonstrate a strong decrease of the total reflectance near 5-15 % in the spectral region λ < 1 μm in comparison to crystalline silicon (c-Si) substrate. The interband photoluminescence (PL) and Raman scattering intensities increase strongly for SiNWs in comparison with the corresponding values of the c-Si substrate. These effects can be interpreted as an increase of the excitation intensity of SiNWs due to the strong light scattering and the partial light localization in an inhomogeneous optical medium. Along with the interband PL was also detected the PL of SiNWs in the spectral region of 500-1100 nm with a maximum at 750 nm, which can be explained by the radiative recombination of excitons in small Si nanocrystals at nanowire sidewalls in terms of a quantum confinement model. So SiNWs, which are fabricated by environment-friendly chemistry, have a great potential for use in photovoltaic and photonics applications.

Loading...
Thumbnail Image
Item

XPS investigations of MOCVD tin oxide thin layers on Si nanowires array

2018, Turishchev, S.Yu., Chuvenkova, Olga, Parinova, V.E., Koyuda, D.A., Chumakov, Ratibor G., Presselt, Martin, Schleusener, Alexander, Sivakov, Vladimir

Tin oxide thin layers were grown by metal-organic chemical vapor deposition technique on the top-down nanostructured silicon nanowires array obtained by metal-assisted wet-chemical technique from single crystalline silicon wafers. The composition of the formed layers were studied by high-resolution X-ray photoelectron spectroscopy of tin (Sn 3d) and oxygen (O 1 s) atoms core levels. The ion beam etching was applied to study the layers depth composition profiles. The composition studies of grown tin oxide layers is shown that the surface of layers contains tin dioxide, but the deeper part contains intermediate tin dioxide and metallic tin phases.

Loading...
Thumbnail Image
Item

Nanostructured Silicon Matrix for Materials Engineering

2023, Liu, Poting, Schleusener, Alexander, Zieger, Gabriel, Bochmann, Arne, van Spronsen, Matthijs A., Sivakov, Vladimir

Tin-containing layers with different degrees of oxidation are uniformly distributed along the length of silicon nanowires formed by a top-down method by applying metalorganic chemical vapor deposition. The electronic and atomic structure of the obtained layers is investigated by applying nondestructive surface-sensitive X-ray absorption near edge spectroscopy using synchrotron radiation. The results demonstrated, for the first time, a distribution effect of the tin-containing phases in the nanostructured silicon matrix compared to the results obtained for planar structures at the same deposition temperatures. The amount and distribution of tin-containing phases can be effectively varied and controlled by adjusting the geometric parameters (pore diameter and length) of the initial matrix of nanostructured silicon. Due to the occurrence of intense interactions between precursor molecules and decomposition by-products in the nanocapillary, as a consequence of random thermal motion of molecules in the nanocapillary, which leads to additional kinetic energy and formation of reducing agents, resulting in effective reduction of tin-based compounds to a metallic tin state for molecules with the highest penetration depth in the nanostructured silicon matrix. This effect will enable clear control of the phase distributions of functional materials in 3D matrices for a wide range of applications.

Loading...
Thumbnail Image
Item

Linear and non-linear optical imaging of cancer cells with silicon nanoparticles

2016, Tolstik, Elen, Osminkina, Liubov A., Akimov, Denis, Gongalsky, Maksim B., Kudryavtsev, Andrew A., Timoshenko, Victor Yu., Heintzmann, Rainer, Sivakov, Vladimir, Popp, Jürgen

New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.

Loading...
Thumbnail Image
Item

Raman Signal Enhancement Tunable by Gold-Covered Porous Silicon Films with Different Morphology

2020, Agafilushkina, Svetlana N., Žukovskaja, Olga, Dyakov, Sergey A., Weber, Karina, Sivakov, Vladimir, Popp, Jürgen, Cialla-May, Dana, Osminkina, Liubov A.

The ease of fabrication, large surface area, tunable pore size and morphology as well surface modification capabilities of a porous silicon (PSi) layer make it widely used for sensoric applications. The pore size of a PSi layer can be an important parameter when used as a matrix for creating surface-enhanced Raman scattering (SERS) surfaces. Here, we evaluated the SERS activity of PSi with pores ranging in size from meso to macro, the surface of which was coated with gold nanoparticles (Au NPs). We found that different pore diameters in the PSi layers provide different morphology of the gold coating, from an almost monolayer to 50 nm distance between nanoparticles. Methylene blue (MB) and 4-mercaptopyridine (4-MPy) were used to describe the SERS activity of obtained Au/PSi surfaces. The best Raman signal enhancement was shown when the internal diameter of torus-shaped Au NPs is around 35 nm. To understand the role of plasmonic resonances in the observed SERS spectrum, we performed electromagnetic simulations of Raman scattering intensity as a function of the internal diameter. The results of these simulations are consistent with the obtained experimental data

Loading...
Thumbnail Image
Item

Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy

2019, Turishchev, S.Yu., Parinova, V.E., Pisliaruka, Aleksandra, Koyuda, D.A., Yermukhamed, Dana, Ming, Tingsen, Ovsyannikov, Ruslan, Smirnov, Dmitriy, Makarova, Anna, Sivakov, Vladimir

Atomic, electronic structure and composition of top-down metal-assisted wet-chemically etched silicon nanowires were studied by synchrotron radiation based X-ray absorption near edge structure technique. Local surrounding of the silicon and oxygen atoms in silicon nanowires array was studied on as-prepared nanostructured surfaces (atop part of nanowires) and their bulk part after, first time applied, in-situ mechanical removal atop part of the formed silicon nanowires. Silicon suboxides together with disturbed silicon dioxide were found in the composition of the formed arrays that affects the electronic structure of silicon nanowires. The results obtained by us convincingly testify to the homogeneity of the phase composition of the side walls of silicon nanowires and the electronic structure in the entire length of the nanowire. The controlled formation of the silicon nanowires array may lead to smart engineering of its atomic and electronic structure that influences the exploiting strategy of metal-assisted wet-chemically etched silicon nanowires as universal matrices for different applications.