Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production

2018-1-29, Sivasankaran, Ramesh P., Rockstroh, Nils, Hollmann, Dirk, Kreyenschulte, Carsten R., Agostini, Giovanni, Lund, Henrik, Acharjya, Amitava, Rabeah, Jabor, Bentrup, Ursula, Junge, Henrik, Thomas, Arne, Brückner, Angelika

Solar hydrogen production from water could be a sustainable and environmentally friendly alternative to fossil energy carriers, yet so far photocatalysts active and stable enough for large-scale applications are not available, calling for advanced research efforts. In this work, H2 evolution rates of up to 1968 and 5188 μmol h−1 g−1 were obtained from aqueous solutions of triethanolamine (TEOA) and oxalic acid (OA), respectively, by irradiating composites of AgIn5S8 (AIS), mesoporous C3N4 (CN, surface area >150 m2/g) and ≤2 wt.% in-situ photodeposited Pt nanoparticles (NPs) with UV-vis (≥300 nm) and pure visible light (≥420 nm). Structural properties and electron transport in these materials were analyzed by XRD, STEM-HAADF, XPS, UV-vis-DRS, ATR-IR, photoluminescence and in situ-EPR spectroscopy. Initial H2 formation rates were highest for Pt/CN, yet with TEOA this catalyst deactivated by inclusion of Pt NPs in the matrix of CN (most pronounced at λ ≥ 300 nm) while it remained active with OA, since in this case Pt NPs were enriched on the outermost surface of CN. In Pt/AIS-CN catalysts, Pt NPs were preferentially deposited on the surface of the AIS phase which prevents them from inclusion in the CN phase but reduces simultaneously the initial H2 evolution rate. This suggests that AIS hinders transport of separated electrons from the CN conduction band to Pt NPs but retains the latter accessible by protons to produce H2.

Loading...
Thumbnail Image
Item

Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization

2019, Pachfule, Pradip, Acharjya, Amitava, Roeser, Jérôme, Sivasankaran, Ramesh P., Ye, Meng-Yang, Brückner, Angelika, Schmidt, Johannes, Thomas, Arne

Covalent organic frameworks (COFs) are promising materials for applications in photocatalysis, due to their conjugated, porous and chemically stable architectures. Alternating electron donor-acceptor-type structures are known to enhance charge carrier transport mobility and stability in polymers and are therefore also interesting building units for COFs used as photocatalysts but also as photoinitiator. In this work, two donor-acceptor COFs using electron deficient 4,4′,4′′-(1,3,5-triazine-2,4,6-triyl)trianiline and electron rich thiophene-based thieno[3,2-b]thiophene-2,5-dicarbaldehyde or [2,2′-bithiophene]-5,5′-dicarbaldehyde linkers are presented. The resulting crystalline and porous COFs have been applied as photoinitiator for visible light induced free radical polymerization of methyl methacrylate (MMA) to poly-methyl methacrylate (PMMA). These results pave the way to the development of robust and heterogeneous systems for photochemistry that offers the transfer of radicals induced by visible light. © The Royal Society of Chemistry 2019.

Loading...
Thumbnail Image
Item

Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Hole-Transfer Agents

2021, Indra, Arindam, Beltrán-Suito, Rodrigo, Müller, Marco, Sivasankaran, Ramesh P., Schwarze, Michael, Acharjya, Amitava, Pradhan, Bapi, Hofkens, Johan, Brückner, Angelika, Thomas, Arne, Menezes, Prashanth W., Driess, Matthias

Visible light-driven photocatalytic reduction of protons to H2 is considered a promising way of solar-to-chemical energy conversion. Effective transfer of the photogenerated electrons and holes to the surface of the photocatalyst by minimizing their recombination is essential for achieving a high photocatalytic activity. In general, a sacrificial electron donor is used as a hole scavenger to remove photogenerated holes from the valence band for the continuation of the photocatalytic hydrogen (H2 ) evolution process. Here, for the first time, the hole-transfer dynamics from Pt-loaded sol-gel-prepared graphitic carbon nitride (Pt-sg-CN) photocatalyst were investigated using different adsorbed hole acceptors along with a sacrificial agent (ascorbic acid). A significant increment (4.84 times) in H2 production was achieved by employing phenothiazine (PTZ) as the hole acceptor with continuous H2 production for 3 days. A detailed charge-transfer dynamic of the photocatalytic process in the presence of the hole acceptors was examined by time-resolved photoluminescence and in situ electron paramagnetic resonance studies.