Search Results

Now showing 1 - 2 of 2
  • Item
    Giant thermal expansion and α-precipitation pathways in Ti-Alloys
    (London : Nature Publishing Group, 2017) Bönisch, M.; Panigrahi, A.; Stoica, M.; Calin, M.; Ahrens, E.; Zehetbauer, M.; Skrotzki, W.; Eckert, J.
    Ti-Alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti-Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10-6 to-95.1×10-6 °C-1) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″lean and α″iso. Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti-Nb alloys and β-stabilized Ti-Alloys in general.
  • Item
    Universal scaling behavior of the upper critical field in strained FeSe0.7Te0.3 thin films
    (Bristol : Institute of Physics Publishing, 2018) Yuan, F.; Grinenko, V.; Iida, K.; Richter, S.; Pukenas, A.; Skrotzki, W.; Sakoda, M.; Naito, M.; Sala, A.; Putti, M.; Yamashita, A.; Takano, Y.; Shi, Z.; Nielsch, K.; Hühne, R.
    Revealing the universal behaviors of iron-based superconductors (FBS) is important to elucidate the microscopic theory of superconductivity. In this work, we investigate the effect of in-plane strain on the slope of the upper critical field H c2 at the superconducting transition temperature T c (i.e. -dH c2/dT) for FeSe0.7Te0.3 thin films. The in-plane strain tunes T c in a broad range, while the composition and disorder are almost unchanged. We show that -dH c2/dT scales linearly with T c, indicating that FeSe0.7Te0.3 follows the same universal behavior as observed for pnictide FBS. The observed behavior is consistent with a multiband superconductivity paired by interband interaction such as sign change s ± superconductivity.