Search Results

Now showing 1 - 2 of 2
  • Item
    Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd–Au Alloy
    (Basel : MDPI, 2018-1-25) Toth, Laszlo S.; Skrotzki, Werner; Zhao, Yajun; Pukenas, Aurimas; Braun, Christian; Birringer, Rainer
    Employing a recent modeling scheme for grain boundary sliding [Zhao et al. Adv. Eng. Mater. 2017, doi:10.1002/adem.201700212], crystallographic textures were simulated for nanocrystalline fcc metals deformed in shear compression. It is shown that, as grain boundary sliding increases, the texture strength decreases while the signature of the texture type remains the same. Grain boundary sliding affects the texture components differently with respect to intensity and angular position. A comparison of a simulation and an experiment on a Pd–10 atom % Au alloy with a 15 nm grain size reveals that, at room temperature, the predominant deformation mode is grain boundary sliding contributing to strain by about 60%.
  • Item
    Phase Transformation Induced by High Pressure Torsion in the High-Entropy Alloy CrMnFeCoNi
    (Basel : MDPI, 2022) Chulist, Robert; Pukenas, Aurimas; Chekhonin, Paul; Hohenwarter, Anton; Pippan, Reinhard; Schell, Norbert; Skrotzki, Werner
    The forward and reverse phase transformation from face-centered cubic (fcc) to hexagonal close-packed (hcp) in the equiatomic high-entropy alloy (HEA) CrMnFeCoNi has been investigated with diffraction of high-energy synchrotron radiation. The forward transformation has been induced by high pressure torsion at room and liquid nitrogen temperature by applying different hydrostatic pressures and large shear strains. The volume fraction of hcp phase has been determined by Rietveld analysis after pressure release and heating-up to room temperature as a function of hydrostatic pressure. It increases with pressure and decreasing temperature. Depending on temperature, a certain pressure is necessary to induce the phase transformation. In addition, the onset pressure depends on hydrostaticity; it is lowered by shear stresses. The reverse transformation evolves over a long period of time at ambient conditions due to the destabilization of the hcp phase. The effect of the phase transformation on the microstructure and texture development and corresponding microhardness of the HEA at room temperature is demonstrated. The phase transformation leads to an inhomogeneous microstructure, weakening of the shear texture, and a surprising hardness anomaly. Reasons for the hardness anomaly are discussed in detail.