Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

All-optical supercontinuum switching

2020, Melchert, Oliver, Brée, Carsten, Tajalli, Ayhan, Pape, Alexander, Arkhipov, Rostislav, Willms, Stephanie, Babushkin, Ihar, Skryabin, Dmitry, Steinmeyer, Günter, Morgner, Uwe, Demircan, Ayhan

Efficient all-optical switching is a challenging task as photons are bosons and cannot immediately interact with each other. Consequently, one has to resort to nonlinear optical interactions, with the Kerr gate being the classical example. However, the latter requires strong pulses to switch weaker ones. Numerous approaches have been investigated to overcome the resulting lack of fan-out capability of all-optical switches, most of which relied on types of resonant enhancement of light-matter interaction. Here we experimentally demonstrate a novel approach that utilizes switching between different portions of soliton fission induced supercontinua, exploiting an optical event horizon. This concept enables a high switching efficiency and contrast in a dissipation free setting. Our approach enables fan-out, does not require critical biasing, and is at least partially cascadable. Controlling complex soliton dynamics paves the way towards building all-optical logic gates with advanced functionalities. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Modulational instability of discrete solitons in coupled waveguides with group velocity dispersion

2007, Yulin, Alexey, Skryabin, Dmitry, Vladimir, Andrei

We study temporal modulational instability of spatial discrete solitons in waveguide arrays with group velocity dispersion (GVD). For normal GVD we report existence of the strong 'neck'-type instability specific for the discrete solitons. For anomalous GVD the instability leads to formation of the mixed discrete-continuous spatio-temporal quasi-solitons. Feasibility of experimental observation of these effects in the arrays of silicon-on-insulator waveguides is discussed.

Loading...
Thumbnail Image
Item

Multi-stability and polariton formation in microcavity polaritonic waveguides

2015, Slavcheva, Gabriela, Gorbach, Andrey V., Pimenov, Alexander, Vladimirov, Andrei G., Skryabin, Dmitry

Nonlinear polaritons in microcavity waveguides are demonstrated to exhibit multi-stable behaviour and rich dynamics, including filamentation and soliton formation. We find that the multi-stability originates from co-existense of different transverse modes of the polaritonic waveguide. Modulational stability and conditions for multi-mode polariton solitons are studied. Soliton propagation in tilted, relative to the pump momentum, waveguides is demonstrated and a critical tilt angle for the soliton propagation is found.