Search Results

Now showing 1 - 3 of 3
  • Item
    3D numerical simulations of THz generation by two-color laser filaments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Bergé, Luc; Skupin, Stefan; Köhler, Christian; Babushkin, Ihar; Herrmann, Joachim
    Terahertz (THz) radiation produced by the filamentation of two-color pulses over long distances in argon is numerically investigated using a comprehensive model in full spacetime resolved geometry. We show that the dominant physical mechanism for THz generation in the filamentation regime at clamping intensity is based on quasi-dc plasma currents. The calculated THz spectra for different pump pulse energies and pulse durations are in agreement with previously reported experimental observations. For the same pulse parameters, near-infrared pump pulses at 2 m are shown to generate a more than one order of magnitude larger THz yield than pumps centered at 800 nm.
  • Item
    Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Babushkin, Ihar; Kuehn, Wihelm; Köhler, Christian; Skupin, Stefan; Bergé, Luc; Reimann, Klaus; Woerner, Michael; Herrmann, Joachim; Elsaesser, Thomas
    We present a combined theoretical and experimental study of spatio-temporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatio-temporal reshaping and of a plasma-induced blue-shift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission.
  • Item
    Plasma induced pulse breaking in filamentary self-compression
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Brée, Carsten; Demircan, Ayhan; Skupin, Stefan; Berg´e, Luc; Steinmeyer, Günter
    A plasma induced temporal break-up in filamentary propagation has recently been identified as one of the key events in the temporal self-compression of femtosecond laser pulses. An analysis of the Nonlinear Schrödinger Equation coupled to a noninstantaneous plasma response yields a set of stationary states. This analysis clearly indicates that the emergence of double-hump, characteristically asymmetric temporal on-axis intensity profiles in regimes where plasma defocusing saturates the optical collapse caused by Kerr self-focusing is an inherent property of the underlying dynamical model.