Search Results

Now showing 1 - 2 of 2
  • Item
    Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment
    (München : European Geopyhsical Union, 2013) Crippa, M.; Canonaco, F.; Slowik, J.G.; El Haddad, I.; DeCarlo, P.F.; Mohr, C.; Heringa, M.F.; Chirico, R.; Marchand, N.; Temime-Roussel, B.; Abidi, E.; Poulain, L.; Wiedensohler, A.; Baltensperger, U.; Prévôt, A.S.H.
    Secondary organic aerosol (SOA), a prominent fraction of particulate organic mass (OA), remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS) and a proton transfer reaction mass spectrometer (PTR-MS). A better constrained apportionment of primary OA (POA) sources is also achieved using this methodology, making use of gas-phase tracers. These tracers made possible the discrimination between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA), while contributions from photochemistry-driven SOA (9% of total OA) and marine emissions (13% of total OA) were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime). This approach was successfully applied here and implemented in a new source apportionment toolkit.
  • Item
    In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity
    (Katlenburg-Lindau : EGU, 2015) Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; Denier van der Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q.J.; Michoud, V.; Slowik, J.G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J.L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.
    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.