Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Fulleretic well-defined scaffolds: Donor–fullerene alignment through metal coordination and its effect on photophysics

2016, Williams, Derek E., Dolgopolova, Ekaterina A., Godfrey, Danielle C., Ermolaeva, Evgeniya D., Pellechia, Perry J., Greytak, Andrew B., Smith, Mark D., Avdoshenko, Stanislav M., Popov, Alexey A., Shustova, Natalia B.

Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross‐polarization magic‐angle spinning NMR spectroscopy, X‐ray diffraction, and time‐resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy‐transfer (ET) studies of the fulleretic donor–acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well‐defined fulleretic donor–acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics.

Loading...
Thumbnail Image
Item

(BB)-Carboryne Complex of Ruthenium: Synthesis by Double B-H Activation at a Single Metal Center

2016, Eleazer, Bennett J., Smith, Mark D., Popov, Alexey A., Peryshkov, Dmitry V.

The first example of a transition metal (BB)-carboryne complex containing two boron atoms of the icosahedral cage connected to a single exohedral metal center (POBBOP)Ru(CO)2 (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) was synthesized by double B-H activation within the strained m-carboranyl pincer framework. Theoretical calculations revealed that the unique three-membered (BB)>Ru metalacycle is formed by two bent B-Ru σ-bonds with the concomitant increase of the bond order between the two metalated boron atoms. The reactivity of the highly strained electron-rich (BB)-carboryne fragment with small molecules was probed by reactions with electrophiles. The carboryne-carboranyl transformations reported herein represent a new mode of cooperative metal-ligand reactivity of boron-based complexes.

Loading...
Thumbnail Image
Item

Hierarchical Corannulene‐Based Materials: Energy Transfer and Solid‐State Photophysics

2017-3-23, Rice, Allison M., Fellows, W. Brett, Dolgopolova, Ekaterina A., Greytak, Andrew B., Vannucci, Aaron K., Smith, Mark D., Karakalos, Stavros G., Krause, Jeanette A., Avdoshenko, Stanislav M., Popov, Alexey A., Shustova, Natalia B.

We report the first example of a donor–acceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donor–acceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of π-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices.