Search Results

Now showing 1 - 2 of 2
  • Item
    Discontinuous switching of position of two coexisting phases
    ([Bad Honnef] : Dt. Physikalische Ges., 2018) Krüger, Samuel; Weber, Christoph A.; Sommer, Jens-Uwe; Jülicher, Frank
    Liquid–liquid phase separation leads to the formation of condensed phases that coexist with a fluid. Here we investigate how the positions of a condensed phase can be controlled by using concentration gradients of a regulator that influences phase separation. We consider a mean field model of a ternary mixture where a concentration gradient of a regulator is imposed by an external potential. A novel first order phase transition occurs at which the position of the condensed phase switches in a discontinuous manner. This mechanism could have implications for the spatial organisation of biological cells and provides a control mechanism for droplets in microfluidic systems.
  • Item
    Correlations in multithermostat Brownian systems with Lorentz force
    ([London] : IOP, 2020) Abdoli, Iman; Kalz, Erik; Vuijk, Hidde D.; Wittmann, René; Sommer, Jens-Uwe; Brader, Joseph M.; Sharma, Abhinav
    We study the motion of a Brownian particle subjected to Lorentz force due to an external magnetic field. Each spatial degree of freedom of the particle is coupled to a different thermostat. We show that the magnetic field results in correlation between different velocity components in the stationary state. Integrating the velocity autocorrelation matrix, we obtain the diffusion matrix that enters the Fokker-Planck equation for the probability density. The eigenvectors of the diffusion matrix do not align with the temperature axes. As a consequence the Brownian particle performs spatially correlated diffusion. We further show that in the presence of an isotropic confining potential, an unusual, flux-free steady state emerges which is characterized by a non-Boltzmann density distribution, which can be rotated by reversing the magnetic field. The nontrivial steady state properties of our system result from the Lorentz force induced coupling of the spatial degrees of freedom which cease to exist in equilibrium corresponding to a single-temperature system. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.