Search Results

Now showing 1 - 2 of 2
  • Item
    Abundance-age relations with red clump stars in open clusters
    (Les Ulis : EDP Sciences, 2021) Casamiquela, L.; Soubiran, C.; Jofré, P.; Chiappini, C.; Lagarde, N.; Tarricq, Y.; Carrera, R.; Jordi, C.; Balaguer-Núñez, L.; Carbajo-Hijarrubia, J.; Blanco-Cuaresma, S.
    Context. Precise chemical abundances coupled with reliable ages are key ingredients to understanding the chemical history of our Galaxy. Open clusters (OCs) are useful for this purpose because they provide ages with good precision. Aims. The aim of this work is to investigate the relation between different chemical abundance ratios and age traced by red clump (RC) stars in OCs. Methods. We analyzed a large sample of 209 reliable members in 47 OCs with available high-resolution spectroscopy. We applied a differential line-by-line analysis, performing a comprehensive chemical study of 25 chemical species. This sample is among the largest samples of OCs homogeneously characterized in terms of atmospheric parameters, detailed chemistry, and age. Results. In our metallicity range (-0.2 < [M/H] < +0.2) we find that while most Fe-peak and α elements show a flat dependence on age, the s-process elements show a decreasing trend with increasing age with a remarkable knee at 1 Gyr. For Ba, Ce, Y, Mo, and Zr, we find a plateau at young ages (< 1 Gyr). We investigate the relations between all possible combinations among the computed chemical species and age. We find 19 combinations with significant slopes, including [Y/Mg] and [Y/Al]. The ratio [Ba/α] shows the most significant correlation. Conclusions. We find that the [Y/Mg] relation found in the literature using solar twins is compatible with the one found here in the solar neighborhood. The age-abundance relations in clusters at large distances(d > 1 kpc) show larger scatter than those in clusters in the solar neighborhood, particularly in the outer disk. We conclude that, in addition to pure nucleosynthetic arguments, the complexity of the chemical space introduced by the Galactic dynamics must be taken into account in order to understand these relations, especially outside of the local bubble. © L. Casamiquela et al. 2021.
  • Item
    Gaia Data Release 2 : Processing the spectroscopic data
    (Les Ulis : EDP Sciences, 2018) Sartoretti, P.; Katz, D.; Cropper, M.; Panuzzo, P.; Seabroke, G. M.; Viala, Y.; Benson, K.; Blomme, R.; Jasniewicz, G.; Jean-Antoine, A.; Huckle, H.; Smith, M.; Baker, S.; Crifo, F.; Damerdji, Y.; David, M.; Dolding, C.; Frémat, Y.; Gosset, E.; Guerrier, A.; Guy, L. P.; Haigron, R.; Janßen, K.; Marchal, O.; Plum, G.; Soubiran, C.; Thévenin, F.; Ajaj, M.; Allende Prieto, C.; Babusiaux, C.; Boudreault, S.; Chemin, L.; Delle Luche, C.; Fabre, C.; Gueguen, A.; Hambly, N. C.; Lasne, Y.; Meynadier, F.; Pailler, F.; Panem, C.; Riclet, F.; Royer, F.; Tauran, G.; Zurbach, C.; Zwitter, T.; Arenou, F.; Gomez, A.; Lemaitre, V.; Leclerc, N.; Morel, T.; Munari, U.; Turon, C.; Žerjal, M.
    Context. The Gaia Data Release 2 (DR2 ) contains the first release of radial velocities complementing the kinematic data of a sample of about 7 million relatively bright, late-type stars. Aims. This paper provides a detailed description of the Gaia spectroscopic data processing pipeline, and of the approach adopted to derive the radial velocities presented in DR2 . Methods. The pipeline must perform four main tasks: (i) clean and reduce the spectra observed with the Radial Velocity Spectrometer (RVS); (ii) calibrate the RVS instrument, including wavelength, straylight, line-spread function, bias non-uniformity, and photometric zeropoint; (iii) extract the radial velocities; and (iv) verify the accuracy and precision of the results. The radial velocity of a star is obtained through a fit of the RVS spectrum relative to an appropriate synthetic template spectrum. An additional task of the spectroscopic pipeline was to provide first-order estimates of the stellar atmospheric parameters required to select such template spectra. We describe the pipeline features and present the detailed calibration algorithms and software solutions we used to produce the radial velocities published in DR2 . Results. The spectroscopic processing pipeline produced median radial velocities for Gaia stars with narrow-band near-IR magnitude GRVS ≤ 12 (i.e. brighter than V ∼ 13). Stars identified as double-lined spectroscopic binaries were removed from the pipeline, while variable stars, single-lined, and non-detected double-lined spectroscopic binaries were treated as single stars. The scatter in radial velocity among different observations of a same star, also published in Gaia DR2, provides information about radial velocity variability. For the hottest (Te≥ 7000 K) and coolest (Te≤ 3500 K) stars, the accuracy and precision of the stellar parameter estimates are not sufficient to allow selection of appropriate templates. The radial velocities obtained for these stars were removed from DR2 . The pipeline also provides a first-order estimate of the performance obtained. The overall accuracy of radial velocity measurements is around ∼200-300 m s-1, and the overall precision is ∼1 km s-1; it reaches ∼200 m s-1 for the brightest stars.