Search Results

Now showing 1 - 10 of 20
  • Item
    Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction
    (Weinheim : Wiley-VCH Verlag, 2019) Marx, Maximilian; Mele, Andrea; Spannenberg, Anke; Steinlechner, Christoph; Junge, Henrik; Schollhammer, Philippe; Beller, Matthias
    Reproducibility of photocatalytic reactions, especially when conducted on small scale for improved turnover numbers with in situ formed catalysts can prove challenging. Herein, we showcase the problematic reproducibility on the example of attractive photocatalytic CO2 reduction utilizing [FeFe] hydrogenase mimics. These Fe complexes, well-known for their application in proton reduction reactions, were combined with a heteroleptic Cu photosensitizer and produced CO/H2/HCO2H mixtures of variable constitution. However, the reactions indicated a poor reproducibility, even when conducted with well-defined complexes. Based on our experience, we make suggestions for scientists working in the field of photocatalysis on how to address and report the reproducibility of novel photocatalytic reaction protocols. In addition, we would like to highlight the importance of studying reproducibility of novel reaction protocols, especially in the fields of photocatalytic water splitting and CO2 reduction, where TONs are widely used as the comparable measure for catalytic activity. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Cooperative catalytic methoxycarbonylation of alkenes: Uncovering the role of palladium complexes with hemilabile ligands
    (Cambridge : RSC, 2018) Dong, Kaiwu; Sang, Rui; Wei, Zhihong; Liu, Jie; Dühren, Ricarda; Spannenberg, Anke; Jiao, Haijun; Neumann, Helfried; Jackstell, Ralf; Franke, Robert; Beller, Matthias
    Mechanistic studies of the catalyst [Pd2(dba)3/1,1′-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal-ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step.
  • Item
    3,3′-Dimethyl-1,1′-methyl­enediimidazolium tetra­bromido­cobaltate(II)
    (Chester : IUCr, 2018) Peppel, Tim; Spannenberg, Anke
    The title compound, (C9H14N4)[CoBr4], was obtained as single crystals directly in very low yield as a side product in the reaction of 1,1′-bis­(1-methyl­imidazolium)acetate bromide and CoBr2. The title compound consists of an imidazolium-based dication and a tetra­bromido­cobaltate(II) complex anion, which are connected via C—H...Br inter­actions in the crystal. The dihedral angle between the imidazolium rings in the cation is 72.89 (16)°. The CoII ion in the anion is coordinated tetra­hedrally by four bromide ligands [Co—Br = 2.4025 (5)–2.4091 (5) Å and Br—Co—Br = 106.224 (17)–113.893 (17)°]. The compound exhibits a high melting point (>300°C) and is a light-blue solid under ambient conditions.
  • Item
    A second polymorph of 3,4-bis­­(6-bromo­pyridin-3-yl)-1,2,5-thia­diazole
    (Chester : International Union of Crystallography, 2016) Becker, Lisanne; Altenburger, Kai; Spannenberg, Anke; Arndt, Perdita; Rosenthal, Uwe
    The title compound, C12H6Br2N4S, a second polymorph in the triclinic space group P-1, is presented. As in the earlier reported monoclinic polymorph in the space group C2/c [Becker et al. (2016[Becker, L., Reiss, F., Altenburger, K., Spannenberg, A., Arndt, P., Jiao, H. & Rosenthal, U. (2016). Chem. Eur. J. In the press. doi: 10.1002/chem.201601337.]). Chem. Eur. J. In the press], the thia­diazole ring is planar with an r.m.s. deviation of 0.004 Å. The five-membered ring is tilted with respect to the two pyridyl substituents by 23.16 (7) and 49.47 (9)°. In the crystal, mol­ecules are linked by a weak non-bonding Br⋯N inter­action [3.056 (3) Å]. Furthermore, a column of mol­ecules is established along the b axis by π–π stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.7014 (16) and 3.5934 (15) Å]. Additionally, a short inter­molecular Br⋯Br contact [3.3791 (6) Å] and Br⋯π-aryl contacts [3.6815 (11)–3.7659 (12) Å] towards the thia­diazole and pyridine rings are found.
  • Item
    Synthesis of C2-Symmetric Diphosphormonoamidites and Their Use as Ligands in Rh-Catalyzed Hydroformylation: Relationships between Activity and Hydrolysis Stability
    (Weinheim : Wiley-VCH-Verl., 2017-1-23) Morales Torres, Galina; Behrens, Stephan; Michalik, Dirk; Selent, Detlef; Spannenberg, Anke; Lühr, Susan; Dyballa, Katrin Marie; Franke, Robert; Börner, Armin
    A series of diphosphoramidites has been synthetized with a piperazine, homopiperazine, and an acyclic 1,2-diamine unit in the backbone. New compounds were tested alongside related N-acyl phosphoramidites as ligands in the Rh-catalyzed hydroformylation of n-octenes to investigate their influence on the activity and regioselectivity. A subsequent study of their hydrolysis stability revealed that the most stable ligands induced the highest activity in the catalytic reaction.
  • Item
    1,1-Bis(di­phenyl­phosphor­yl)hydrazine
    (Chester : International Union of Crystallography, 2018) Höhne, Martha; Aluri, Bhaskar R.; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title compound, C24H22N2O2P2, contains a diphosphazane backbone, as well as a hydrazine entity. The P—N—P diphosphazane unit and the N-amine N atom are almost coplanar, and the O atoms of the Ph2P(O) units are oriented trans to each other with respect to the P...P axis. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H...O hydrogen bonds, forming rings of graph-set motif R22(10).
  • Item
    Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex : Scope and mechanism
    (Cambridge : RSC, 2019) Leischner, Thomas; Suarez, Lluis Artús; Spannenberg, Anke; Nova, Ainara; Junge, Kathrin; Nova, Ainara; Beller, Matthias
    A series of molybdenum pincer complexes has been shown for the first time to be active in the catalytic hydrogenation of amides. Among the tested catalysts, Mo-1a proved to be particularly well suited for the selective C-N hydrogenolysis of N-methylated formanilides. Notably, high chemoselectivity was observed in the presence of certain reducible groups including even other amides. The general catalytic performance as well as selectivity issues could be rationalized taking an anionic Mo(0) as the active species. The interplay between the amide CO reduction and the catalyst poisoning by primary amides accounts for the selective hydrogenation of N-methylated formanilides. The catalyst resting state was found to be a Mo-alkoxo complex formed by reaction with the alcohol product. This species plays two opposed roles-it facilitates the protolytic cleavage of the C-N bond but it encumbers the activation of hydrogen. This journal is © The Royal Society of Chemistry.
  • Item
    1-Di­phenyl­phosphanyl-2-(di­phenyl­phosphor­yl)hydrazine
    (Chester : IUCr, 2018) Höhne, Martha; Aluri, Bhaskar; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title compound, C24H22N2OP2, is an asymmetrically substituted hydrazine derivative bearing a phosphoryl and a phosphanyl substituent. The PNNP backbone has a torsion angle of −131.01 (8)°. In the crystal, mol­ecules form centrosymmetric dimers by inter­molecular N—H...O hydrogen bonds, which are further linked into a three-dimensional network by weak C—H...O and C—H...π inter­actions.
  • Item
    Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2019) Zhou, Wei; Wei, Zhihong; Spannenberg, Anke; Jiao, Haijun; Junge, Kathrin; Junge, Henrik; Beller, Matthias
    Among the known liquid organic hydrogen carriers, formic acid attracts increasing interest in the context of safe and reversible storage of hydrogen. Here, the first molecularly defined cobalt pincer complex is disclosed for the dehydrogenation of formic acid in aqueous medium under mild conditions. Crucial for catalytic activity is the use of the specific complex 3. Compared to related ruthenium and manganese complexes 7 and 8, this optimal cobalt complex showed improved performance. DFT computations support an innocent non-classical bifunctional outer-sphere mechanism on the triplet state potential energy surface. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Hydrolysis Stability of Bidentate Phosphites Utilized as Modifying Ligands in the Rh-Catalyzed n-Regioselective Hydroformylation of Olefins
    (Washington, DC : ACS, 2016) Zhang, Baoxin; Jiao, Haijun; Michalik, Dirk; Kloß, Svenja; Deter, Lisa Marie; Selent, Detlef; Spannenberg, Anke; Franke, Robert; Börner, Armin
    The stability of ligands and catalysts is an almost neglected issue in homogeneous catalysis, but it is crucial for successful application of this methodology in technical scale. We have studied the effect of water on phosphites, which are the most applied cocatalysts in the n-regioselective homogeneous Rh-catalyzed hydroformylation of olefins. The stability of the bidentate nonsymmetrical diphosphite L1, as well as its two monophosphite constituents L2 and L3, toward hydrolysis was investigated by means of in situ NMR spectroscopy under similar conditions as applied in industry. Hydrolysis pathways, intermediates, and kinetics were clarified. DFT calculations were used to support the experimentally found data. The acylphosphite unit L2, which reacts with water in an unselective manner, was proven to be much less stable than the phenolphosphite L3. The stability of the bidentate ligand L1 can be therefore mainly attributed to its phenolphosphite moiety. With an excess of water, the hydrolysis of L1 and L2 as well as their Rh-complexes is first-order with respect to the phosphite. Surprisingly, coordination to Rh significantly stabilizes the monodentate ligand L2, while in strong contrast, the bidentate ligand L1 decomposes faster in the Rh complex. NMR spectroscopy provided evidence for the existence of species from decomposition of phosphites, which can likewise coordinate as ligands to the metal. Electron-withdrawing groups in the periphery of the acylphosphite moiety decrease the stability of L1, whereas 3,5-disubstituted salicylic acid derivatives with bulky groups showed superior stability. These modifications of L1 also give rise to different catalytic performances in the n-regioselective hydroformylation of n-octenes and 2-pentene, from which the 3,5-di-t-butyl-substituted ligand offered a higher n-regioselectivity accompanied by a lowering of the reaction rate in comparison to the parent ligand L1.