Search Results

Now showing 1 - 2 of 2
  • Item
    Preparation of a Series of Supported Nonsymmetrical PNP-Pincer Ligands and the Application in Ester Hydrogenation
    (Weinheim : Wiley-VCH, 2019) Konrath, Robert; Spannenberg, Anke; Kamer, Paul C.J.
    In contrast to their symmetrical analogues, nonsymmetrical PNP-type ligand motifs have been less investigated despite the modular pincer structure. However, the introduction of mixed phosphorus donor moieties provides access to a larger variety of PNP ligands. Herein, a facile solid-phase synthesis approach towards a diverse PNP-pincer ligand library of 14 members is reported. Contrary to often challenging workup procedures in solution-phase, only simple workup steps are required. The corresponding supported ruthenium-PNP catalysts are screened in ester hydrogenation. Usually, industrially applied heterogeneous catalysts require harsh conditions in this reaction (250–350 °C at 100–200 bar) often leading to reduced selectivities. Heterogenized reusable Ru-PNP catalysts are capable of reducing esters and lactones selectively under mild conditions. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Nickel-Catalyzed Stereodivergent Synthesis of E- and Z-Alkenes by Hydrogenation of Alkynes
    (Weinheim : Wiley-VCH, 2019) Murugesan, Kathiravan; Bheeter, Charles Beromeo; Linnebank, Pim R.; Spannenberg, Anke; Reek, Joost N.H.; Jagadeesh, Rajenahally V.; Beller, Matthias
    A convenient protocol for stereodivergent hydrogenation of alkynes to E- and Z-alkenes by using nickel catalysts was developed. Simple Ni(NO3)2⋅6 H2O as a catalyst precursor formed active nanoparticles, which were effective for the semihydrogenation of several alkynes with high selectivity for the Z-alkene (Z/E>99:1). Upon addition of specific multidentate ligands (triphos, tetraphos), the resulting molecular catalysts were highly selective for the E-alkene products (E/Z>99:1). Mechanistic studies revealed that the Z-alkene-selective catalyst was heterogeneous whereas the E-alkene-selective catalyst was homogeneous. In the latter case, the alkyne was first hydrogenated to a Z-alkene, which was subsequently isomerized to the E-alkene. This proposal was supported by density functional theory calculations. This synthetic methodology was shown to be generally applicable in >40 examples and scalable to multigram-scale experiments. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.