Search Results

Now showing 1 - 4 of 4
  • Item
    Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2019) Zhou, Wei; Wei, Zhihong; Spannenberg, Anke; Jiao, Haijun; Junge, Kathrin; Junge, Henrik; Beller, Matthias
    Among the known liquid organic hydrogen carriers, formic acid attracts increasing interest in the context of safe and reversible storage of hydrogen. Here, the first molecularly defined cobalt pincer complex is disclosed for the dehydrogenation of formic acid in aqueous medium under mild conditions. Crucial for catalytic activity is the use of the specific complex 3. Compared to related ruthenium and manganese complexes 7 and 8, this optimal cobalt complex showed improved performance. DFT computations support an innocent non-classical bifunctional outer-sphere mechanism on the triplet state potential energy surface. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    A Comparative Study on the Thermodynamics of Halogen Bonding of Group 10 Pincer Fluoride Complexes
    (Weinheim : Wiley-VCH, 2019) Joksch, Markus; Agarwala, Hemlata; Ferro, Monica; Michalik, Dirk; Spannenberg, Anke; Beweries, Torsten
    The thermodynamics of halogen bonding of a series of isostructural Group 10 metal pincer fluoride complexes of the type [(3,5-R2-tBuPOCOPtBu)MF] (3,5-R2-tBuPOCOPtBu=κ3-C6HR2-2,6-(OPtBu2)2 with R=H, tBu, COOMe; M=Ni, Pd, Pt) and iodopentafluorobenzene was investigated. Based on NMR experiments at different temperatures, all complexes 1-tBu (R=tBu, M=Ni), 2-H (R=H, M=Pd), 2-tBu (R=tBu, M=Pd), 2-COOMe (R=COOMe, M=Pd) and 3-tBu (R=tBu, M=Pt) form strong halogen bonds with Pd complexes showing significantly stronger binding to iodopentafluorobenzene. Structural and computational analysis of a model adduct of complex 2-tBu with 1,4-diiodotetrafluorobenzene as well as of structures of iodopentafluorobenzene in toluene solution shows that formation of a type I contact occurs. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Nickel-Catalyzed Stereodivergent Synthesis of E- and Z-Alkenes by Hydrogenation of Alkynes
    (Weinheim : Wiley-VCH, 2019) Murugesan, Kathiravan; Bheeter, Charles Beromeo; Linnebank, Pim R.; Spannenberg, Anke; Reek, Joost N.H.; Jagadeesh, Rajenahally V.; Beller, Matthias
    A convenient protocol for stereodivergent hydrogenation of alkynes to E- and Z-alkenes by using nickel catalysts was developed. Simple Ni(NO3)2⋅6 H2O as a catalyst precursor formed active nanoparticles, which were effective for the semihydrogenation of several alkynes with high selectivity for the Z-alkene (Z/E>99:1). Upon addition of specific multidentate ligands (triphos, tetraphos), the resulting molecular catalysts were highly selective for the E-alkene products (E/Z>99:1). Mechanistic studies revealed that the Z-alkene-selective catalyst was heterogeneous whereas the E-alkene-selective catalyst was homogeneous. In the latter case, the alkyne was first hydrogenated to a Z-alkene, which was subsequently isomerized to the E-alkene. This proposal was supported by density functional theory calculations. This synthetic methodology was shown to be generally applicable in >40 examples and scalable to multigram-scale experiments. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Preparation of a Series of Supported Nonsymmetrical PNP-Pincer Ligands and the Application in Ester Hydrogenation
    (Weinheim : Wiley-VCH, 2019) Konrath, Robert; Spannenberg, Anke; Kamer, Paul C.J.
    In contrast to their symmetrical analogues, nonsymmetrical PNP-type ligand motifs have been less investigated despite the modular pincer structure. However, the introduction of mixed phosphorus donor moieties provides access to a larger variety of PNP ligands. Herein, a facile solid-phase synthesis approach towards a diverse PNP-pincer ligand library of 14 members is reported. Contrary to often challenging workup procedures in solution-phase, only simple workup steps are required. The corresponding supported ruthenium-PNP catalysts are screened in ester hydrogenation. Usually, industrially applied heterogeneous catalysts require harsh conditions in this reaction (250–350 °C at 100–200 bar) often leading to reduced selectivities. Heterogenized reusable Ru-PNP catalysts are capable of reducing esters and lactones selectively under mild conditions. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.