Search Results

Now showing 1 - 10 of 12
  • Item
    Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst
    (Weinheim : Wiley-VCH, 2020) Ryabchuk, Pavel; Leischner, Thomas; Kreyenschulte, Carsten; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A bifunctional 3d-metal catalyst for the cascade synthesis of diverse pyrroles from nitroarenes is presented. The optimal catalytic system Co/NGr-C@SiO2-L is obtained by pyrolysis of a cobalt-impregnated composite followed by subsequent selective leaching. In the presence of this material, (transfer) hydrogenation of easily available nitroarenes and subsequent Paal–Knorr/Clauson-Kass condensation provides >40 pyrroles in good to high yields using dihydrogen, formic acid, or a CO/H2O mixture (WGSR conditions) as reductant. In addition to the favorable step economy, this straightforward domino process does not require any solvents or external co-catalysts. The general synthetic utility of this methodology was demonstrated on a variety of functionalized substrates including the preparation of biologically active and pharmaceutically relevant compounds, for example, (+)-Isamoltane. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Ligand-Controlled Palladium-Catalyzed Carbonylation of Alkynols : Highly Selective Synthesis of α-Methylene-β-Lactones
    (Weinheim : Wiley-VCH, 2020) Ge, Yao; Ye, Fei; Liu, Jiawang; Yang, Ji; Spannenberg, Anke; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    The first general and regioselective Pd-catalyzed cyclocarbonylation to give α-methylene-β-lactones is reported. Key to the success for this process is the use of a specific sterically demanding phosphine ligand based on N-arylated imidazole (L11) in the presence of Pd(MeCN)2Cl2 as pre-catalyst. A variety of easily available alkynols provide under additive-free conditions the corresponding α-methylene-β-lactones in moderate to good yields with excellent regio- and diastereoselectivity. The applicability of this novel methodology is showcased by the direct carbonylation of biologically active molecules including natural products. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Efficient methylation of anilines with methanol catalysed by cyclometalated ruthenium complexes
    (London : RSC Publ., 2021) Piehl, Patrick; Amuso, Roberta; Spannenberg, Anke; Gabriele, Bartolo; Neumann, Helfried; Beller, Matthias
    Cyclometalated ruthenium complexes4-10allow the effective methylation of anilines with methanol to selectively giveN-methylanilines. This hydrogen autotransfer procedure proceeds under mild conditions (60 °C) in a practical manner (NaOH as base). Mechanistic investigations suggest an active homogenous ruthenium complex and β-hydride elimination of methanol as the rate determining step. © The Royal Society of Chemistry 2021.
  • Item
    Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry reaction
    (London : RSC Publ., 2020) Li, Chenfei; Dickson, Robert; Rockstroh, Nils; Rabeah, Jabor; Cordes, David B.; Slawin, Alexandra M.Z.; Hünemörder, Paul; Spannenberg, Anke; Bühl, Michael; Mejía, Esteban; Zysman-Colman, Eli; Kamer, Paul C.J.
    A family of six structurally related heteroleptic copper(i) complexes of the form of [Cu(N^N)(P^P)]+ bearing a 2,9-dimethyl-1,10-phenanthroline diimine (N^N) ligand and a series of electronically tunable xantphos (P^P) ligands have been synthesized and their optoelectronic properties characterized. The reactivity of these complexes in the copper-photocatalyzed aza-Henry reaction of N-phenyltetrahydroisoquinoline was evaluated, while the related excited state kinetics were comprehensively studied. By subtlety changing the electron-donating properties of the P^P ligands with negligible structural differences, we could tailor the photoredox properties and relate them to the reactivity. Moreover, depending on the exited-state redox potential of the catalysts, the preferred mechanism can shift between reductive quenching, energy transfer and oxidative quenching pathways. A combined study of the structural modulation of copper(i) photocatalysts, optoelectronic properties and photocatalytic reactivity resulted in a clearer understanding of both the rational design of the photocatalyst and the complexity of competing photoinduced electron and energy transfer mechanisms. © The Royal Society of Chemistry.
  • Item
    Synthesis of Molybdenum Pincer Complexes and Their Application in the Catalytic Hydrogenation of Nitriles
    (Weinheim : Wiley-VCH Verlag, 2020) Leischner, Thomas; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A series of molybdenum(0), (I) and (II) complexes ligated by different PNP and NNN pincer ligands were synthesized and structurally characterized. Along with previously described Mo−PNP complexes Mo-1 and Mo-2, all prepared compounds were tested in the catalytic hydrogenation of aromatic nitriles to primary amines. Among the applied catalysts, Mo-1 is particularly well suited for the hydrogenation of electron-rich benzonitriles. Additionally, two aliphatic nitriles were transformed into the desired products in 80 and 86 %, respectively. Moreover, catalytic intermediate Mo-1a was isolated and its role in the catalytic cycle was subsequently demonstrated. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Dehydropolymerisation of Methylamine Borane and an N-Substituted Primary Amine Borane Using a PNP Fe Catalyst
    (Weinheim : Wiley-VCH, 2020) Anke, Felix; Boye, Susanne; Spannenberg, Anke; Lederer, Albena; Heller, Detlef; Beweries, Torsten
    Dehydropolymerisation of methylamine borane (H3B⋅NMeH2) using the well-known iron amido complex [(PNP)Fe(H)(CO)] (PNP=N(CH2CH2PiPr2)2) (1) gives poly(aminoborane)s by a chain-growth mechanism. In toluene, rapid dehydrogenation of H3B⋅NMeH2 following first-order behaviour as a limiting case of a more general underlying Michaelis–Menten kinetics is observed, forming aminoborane H2B=NMeH, which selectively couples to give high-molecular-weight poly(aminoborane)s (H2BNMeH)n and only traces of borazine (HBNMe)3 by depolymerisation after full conversion. Based on a series of comparative experiments using structurally related Fe catalysts and dimethylamine borane (H3B⋅NMe2H) polymer formation is proposed to occur by nucleophilic chain growth as reported earlier computationally and experimentally. A silyl functionalised primary borane H3B⋅N(CH2SiMe3)H2 was studied in homo- and co-dehydropolymerisation reactions to give the first examples for Si containing poly(aminoborane)s. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    1-Benzyl-3-methylimidazolium bromide
    (Chester : IUCr, 2020) Peppel, Tim; Wulf, Christoph; Spannenberg, Anke
    [no abstract available]
  • Item
    Palladium-Catalyzed Cascade Carbonylation to α,β-Unsaturated Piperidones via Selective Cleavage of Carbon-Carbon Triple Bonds
    (Weinheim : Wiley-VCH, 2021) Ge, Yao; Ye, Fei; Yang, Ji; Spannenberg, Anke; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    A direct and selective synthesis of α,β-unsaturated piperidones by a new palladium-catalyzed cascade carbonylation is described. In the presented protocol, easily available propargylic alcohols react with aliphatic amines to provide a broad variety of interesting heterocycles. Key to the success of this transformation is a remarkable catalytic cleavage of the present carbon–carbon triple bond by using a specific catalyst with 2-diphenylphosphinopyridine as ligand and appropriate reaction conditions. Mechanistic studies and control experiments revealed branched unsaturated acid 11 as crucial intermediate. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Catalytic, Kinetic, and Mechanistic Insights into the Fixation of CO2 with Epoxides Catalyzed by Phenol-Functionalized Phosphonium Salts
    (Weinheim : Wiley-VCH, 2021) Hu, Yuya; Wei, Zhihong; Frey, Anna; Kubis, Christoph; Ren, Chang-Yue; Spannenberg, Anke; Jiao, Haijun; Werner, Thomas
    A series of hydroxy-functionalized phosphonium salts were studied as bifunctional catalysts for the conversion of CO2 with epoxides under mild and solvent-free conditions. The reaction in the presence of a phenol-based phosphonium iodide proceeded via a first order rection kinetic with respect to the substrate. Notably, in contrast to the aliphatic analogue, the phenol-based catalyst showed no product inhibition. The temperature dependence of the reaction rate was investigated, and the activation energy for the model reaction was determined from an Arrhenius-plot (Ea =39.6 kJ mol-1 ). The substrate scope was also evaluated. Under the optimized reaction conditions, 20 terminal epoxides were converted at room temperature to the corresponding cyclic carbonates, which were isolated in yields up to 99 %. The reaction is easily scalable and was performed on a scale up to 50 g substrate. Moreover, this method was applied in the synthesis of the antitussive agent dropropizine starting from epichlorohydrin and phenylpiperazine. Furthermore, DFT calculations were performed to rationalize the mechanism and the high efficiency of the phenol-based phosphonium iodide catalyst. The calculation confirmed the activation of the epoxide via hydrogen bonding for the iodide salt, which facilitates the ring-opening step. Notably, the effective Gibbs energy barrier regarding this step is 97 kJ mol-1 for the bromide and 72 kJ mol-1 for the iodide salt, which explains the difference in activity.
  • Item
    CpCo(i) precatalysts for [2 + 2 + 2] cycloaddition reactions : Synthesis and reactivity
    (London : RSC Publ., 2020) Fischer, Fabian; Pientka, Tobias; Jiao, Haijun; Spannenberg, Anke; Hapke, Marko
    The efficient synthesis and structural characterisation of a series of novel CpCo(i)-olefin-phosphite/phosphoramidite complexes and their evaluation in catalytic cyclotrimerisation reactions are reported. The protocol for precatalyst synthesis is widely applicable to different P-containing ligands, especially phosphites and phosphoramidites, as well as acyclic and cyclic olefins. A selection of the prepared complexes was investigated towards their catalytic performance in [2 + 2 + 2] cycloaddition reactions of diynes and nitriles, as well as triynes. While revealing significant differences in reactivity, the most reactive precatalysts work even already at 75 °C. One of these precatalysts also proved its potential in exemplary (co)cyclotrimerisations towards functionalised pyridines and benzenes. The energetics of complex formation and exemplary ligand exchange with a substrate diyne were elucidated by theoretical calculations and compared with the catalytic reactivity. © 2020 The Royal Society of Chemistry.