Search Results

Now showing 1 - 2 of 2
  • Item
    Dehydropolymerisation of Methylamine Borane and an N-Substituted Primary Amine Borane Using a PNP Fe Catalyst
    (Weinheim : Wiley-VCH, 2020) Anke, Felix; Boye, Susanne; Spannenberg, Anke; Lederer, Albena; Heller, Detlef; Beweries, Torsten
    Dehydropolymerisation of methylamine borane (H3B⋅NMeH2) using the well-known iron amido complex [(PNP)Fe(H)(CO)] (PNP=N(CH2CH2PiPr2)2) (1) gives poly(aminoborane)s by a chain-growth mechanism. In toluene, rapid dehydrogenation of H3B⋅NMeH2 following first-order behaviour as a limiting case of a more general underlying Michaelis–Menten kinetics is observed, forming aminoborane H2B=NMeH, which selectively couples to give high-molecular-weight poly(aminoborane)s (H2BNMeH)n and only traces of borazine (HBNMe)3 by depolymerisation after full conversion. Based on a series of comparative experiments using structurally related Fe catalysts and dimethylamine borane (H3B⋅NMe2H) polymer formation is proposed to occur by nucleophilic chain growth as reported earlier computationally and experimentally. A silyl functionalised primary borane H3B⋅N(CH2SiMe3)H2 was studied in homo- and co-dehydropolymerisation reactions to give the first examples for Si containing poly(aminoborane)s. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Selective catalytic two-step process for ethylene glycol from carbon monoxide
    ([London] : Nature Publishing Group UK, 2016) Dong, Kaiwu; Elangovan, Saravanakumar; Sang, Rui; Spannenberg, Anke; Jackstell, Ralf; Junge, Kathrin; Li, Yuehui; Beller, Matthias
    Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C-C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals.