Search Results

Now showing 1 - 10 of 56
  • Item
    Strong solutions to nonlocal 2D Cahn-Hilliard-Navier-Stokes systems with nonconstant viscosity, degenerate mobility and singular potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Frigeri, Sergio; Gal, Ciprian G.; Grasselli, Maurizio; Sprekels, Jürgen
    We consider a nonlinear system which consists of the incompressible Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. This is a diffuse interface model which describes the motion of an incompressible isothermal mixture of two (partially) immiscible fluids having the same density. We suppose that the viscosity depends smoothly on the order parameter as well as the mobility. Moreover, we assume that the mobility is degenerate at the pure phases and that the potential is singular (e.g. of logarithmic type). This system is endowed with no-slip boundary condition for the (average) velocity and homogeneous Neumann boundary condition for the chemical potential. Thus the total mass is conserved. In the two-dimensional case, this problem was already analyzed in some joint papers of the first three authors. However, in the present general case, only the existence of a global weak solution, the (conditional) weak-strong uniqueness and the existence of the global attractor were proven. Here we are able to establish the existence of a (unique) strong solution through an approximation procedure based on time discretization. As a consequence, we can prove suitable uniform estimates which allow us to show some smoothness of the global attractor. Finally, we discuss the existence of strong solutions for the convective nonlocal Cahn-Hilliard equation, with a given velocity field, in the three dimensional case as well.
  • Item
    On an application of Tikhonovs fixed point theorem to a nonlocal Cahn-Hilliard type system modeling phase separation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli in Ric. Mat. 55 (2006) 105-118. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter p and the chemical potential my. Singular contributions to the local free energy in the form of logarithmic or ouble-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonovs fixed point theorem in a rather unusual separable and reflexive Banach space.
  • Item
    Optimal velocity control of a convective Cahn-Hilliard system with double obstacles and dynamic boundary conditions: A deep quench approach
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we investigate a distributed optimal control problem for a convective viscous CahnHilliard system with dynamic boundary conditions. Such systems govern phase separation processes between two phases taking place in an incompressible fluid in a container and, at the same time, on the container boundary. The cost functional is of standard tracking type, while the control is exerted by the velocity of the fluid in the bulk. In this way, the coupling between the state (given by the associated order parameter and chemical potential) and control variables in the governing system of nonlinear partial differential equations is bilinear, which presents a difficulty for the analysis. In contrast to the previous paper Optimal velocity control of a viscous CahnHilliard system with convection and dynamic boundary conditions by the same authors, the bulk and surface free energies are of double obstacle type, which renders the state constraint nondifferentiable. It is well known that for such cases standard constraint qualifications are not satisfied so that standard methods do not apply to yield the existence of Lagrange multipliers. In this paper, we overcome this difficulty by taking advantage of results established in the quoted paper for logarithmic nonlinearities, using a so-called deep quench approximation. We derive results concerning the existence of optimal controls and the first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint system.
  • Item
    On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    The Cahn-Hilliard and viscous Cahn-Hilliard equations with singular and possibly nonsmooth potentials and dynamic boundary condition are considered and some well-posedness and regularity results are proved.
  • Item
    Asymptotic limits and optimal control for the Cahn-Hilliard system with convection and dynamic boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study initial-boundary value problems for the CahnHilliard system with convection and nonconvex potential, where dynamic boundary conditions are assumed for both the associated order parameter and the corresponding chemical potential. While recent works addressed the case of viscous CahnHilliard systems, the pure nonviscous case is investigated here. In its first part, the paper deals with the asymptotic behavior of the solutions as time approaches infinity. It is shown that the w-limit of any trajectory can be characterized in terms of stationary solutions, provided the initial data are sufficiently smooth. The second part of the paper deals with the optimal control of the system by the fluid velocity. Results concerning existence and first-order necessary optimality conditions are proved. Here, we have to restrict ourselves to the case of everywhere defined smooth potentials. In both parts of the paper, we start from corresponding known results for the viscous case, derive sufficiently strong estimates that are uniform with respect to the (positive) viscosity parameter, and then let the viscosity tend to zero to establish the sought results for the nonviscous case.
  • Item
    Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Colli, Pierluigi; Gilardi, Geanni; Podio-Guidugli, Paolo; Sprekels, Jürgen
    We study a diffusion model of phase field type, consisting of a system of two partial differential equations encoding the balances of microforces and microenergy; the two unknowns are the order parameter and the chemical potential. By a careful development of uniform estimates and the deduction of certain useful boundedness properties, we prove existence and uniqueness of a global-in-time smooth solution to the associated initial/boundary-value problem; moreover, we give a description of the relative $omega$-limit set.
  • Item
    Optimal velocity control of a viscous Cahn-Hilliard system with convection and dynamic boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we investigate a distributed optimal control problem for a convective viscous CahnHilliard system with dynamic boundary conditions. Such systems govern phase separation processes between two phases taking place in an incompressible fluid in a container and, at the same time, on the container boundary. The cost functional is of standard tracking type, while the control is exerted by the velocity of the fluid in the bulk. In this way, the coupling between the state (given by the associated order parameter and chemical potential) and control variables in the governing system of nonlinear partial differential equations is bilinear, which presents an additional difficulty for the analysis. The nonlinearities in the bulk and surface free energies are of logarithmic type, which entails that the thermodynamic forces driving the phase separation process may become singular. We show existence for the optimal control problem under investigation, prove the Fréchet differentiability of the associated control-to-state mapping in suitable Banach spaces, and derive the first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint system. Due to the strong nonlinear couplings between state variables and control, the corresponding proofs require a considerable analytical effort.
  • Item
    On the longtime behavior of a viscous Cahn-Hilliard system with convection and dynamic boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study the longtime asymptotic behavior of a phase separation process occurring in a three-dimensional domain containing a fluid flow of given velocity. This process is modeled by a viscous convective CahnHilliard system, which consists of two nonlinearly coupled second-order partial differential equations for the unknown quantities, the chemical potential and an order parameter representing the scaled density of one of the phases. In contrast to other contributions, in which zero Neumann boundary conditions were are assumed for both the chemical potential and the order parameter, we consider the case of dynamic boundary conditions, which model the situation when another phase transition takes place on the boundary. The phase transition processes in the bulk and on the boundary are driven by free energies functionals that may be nondifferentiable and have derivatives only in the sense of (possibly set-valued) subdifferentials. For the resulting initial-boundary value system of CahnHilliard type, general well-posedness results have been established in a recent contribution by the same authors. In the present paper, we investigate the asymptotic behavior of the solutions as times approaches infinity. More precisely, we study the w-limit (in a suitable topology) of every solution trajectory. Under the assumptions that the viscosity coefficients are strictly positive and that at least one of the underlying free energies is differentiable, we prove that the w-limit is meaningful and that all of its elements are solutions to the corresponding stationary system, where the component representing the chemical potential is a constant.
  • Item
    Optimal distributed control of a Cahn-Hilliard-Darcy system with mass sources
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Sprekels, Jürgen; Wu, Hao
    In this paper, we study an optimal control problem for a two-dimensional CahnHilliardDarcy system with mass sources that arises in the modeling of tumor growth. The aim is to monitor the tumor fraction in a finite time interval in such a way that both the tumor fraction, measured in terms of a tracking type cost functional, is kept under control and minimal harm is inflicted to the patient by administering the control, which could either be a drug or nutrition. We first prove that the optimal control problem admits a solution. Then we show that the control-to-state operator is Fréchet differentiable between suitable Banach spaces and derive the first-order necessary optimality conditions in terms of the adjoint variables and the usual variational inequality.
  • Item
    A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A boundary control problem for the pure Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first-order necessary conditions for optimality are proved.