Search Results

Now showing 1 - 10 of 78
  • Item
    Analysis of a time discretization scheme for a nonstandard viscous Cahn-Hilliard system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Colli, Pierluigi; Gilardi, Gianni; Krejcí, Pavel; Podio-Guidugli, Paola; Sprekels, Jürgen
    In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order one with respect to the time step.
  • Item
    Analysis and optimal boundary control of a nonstandard system of phase field equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Colli, Pierluigi; Gillardi, Gianni; Sprekels, Jürgen
    We investigate a nonstandard phase field model of Cahn-Hilliard type. The model, which was introduced in [16], describes two-species phase segregation and consists of a system of two highly nonlinearly coupled PDEs. It has been studied recently in [5], [6] for the case of homogeneous Neumann boundary conditions. In this paper, we investigate the case that the boundary condition for one of the unknowns of the system is of third kind and nonhomogeneous. For the resulting system, we show well-posedness, and we study optimal boundary control problems. Existence of optimal controls is shown, and the first-order necessary optimality conditions are derived. Owing to the strong nonlinear couplings in the PDE system, standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional will be of standard type.
  • Item
    Small strain oscillations of an elastoplastic Kirchhoff plate
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Guenther, Ronald B.; Krejčí, Pavel; Sprekels, Jürgen
    The two dimensional equation for transversal vibrations of an elastoplastic plate is derived from a general three dimensional system with a single yield tensorial von Mises plasticity model in the five dimensional deviatoric space. It leads after dimensional reduction to a multiyield three dimensional Prandtl-Ishlinskii hysteresis model whose weight function is explicitly given. The resulting partial differential equation with hysteresis is solved by means of viscous approximations and a monotonicity argument.
  • Item
    Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double obstacle potentials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In the recent paper Well-posedness and regularity for a generalized fractional CahnHilliard system, the same authors derived general well-posedness and regularity results for a rather general system of evolutionary operator equations having the structure of a CahnHilliard system. The operators appearing in the system equations were fractional versions in the spectral sense of general linear operators A and B having compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. The associated double-well potentials driving the phase separation process modeled by the CahnHilliard system could be of a very general type that includes standard physically meaningful cases such as polynomial, logarithmic, and double obstacle nonlinearities. In the subsequent paper Optimal distributed control of a generalized fractional CahnHilliard system (Appl. Math. Optim. (2018), https://doi.org/10.1007/s00245-018-9540-7) by the same authors, an analysis of distributed optimal control problems was performed for such evolutionary systems, where only the differentiable case of certain polynomial and logarithmic double-well potentials could be admitted. Results concerning existence of optimizers and first-order necessary optimality conditions were derived, where more restrictive conditions on the operators A and B had to be assumed in order to be able to show differentiability properties for the associated control-to-state operator. In the present paper, we complement these results by studying a distributed control problem for such evolutionary systems in the case of nondifferentiable nonlinearities of double obstacle type. For such nonlinearities, it is well known that the standard constraint qualifications cannot be applied to construct appropriate Lagrange multipliers. To overcome this difficulty, we follow here the so-called deep quench method. This technique, in which the nondifferentiable double obstacle nonlinearity is approximated by differentiable logarithmic nonlinearities, was first developed by P. Colli, M.H. Farshbaf-Shaker and J. Sprekels in the paper A deep quench approach to the optimal control of an AllenCahn equation with dynamic boundary conditions and double obstacles (Appl. Math. Optim. 71 (2015), pp. 1-24) and has proved to be a powerful tool in a number of optimal control problems with double obstacle potentials in the framework of systems of CahnHilliard type. We first give a general convergence analysis of the deep quench approximation that includes an error estimate and then demonstrate that its use leads in the double obstacle case to appropriate first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint state system.
  • Item
    A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A boundary control problem for the pure Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first-order necessary conditions for optimality are proved.
  • Item
    Regularity of the solution to a nonstandard system of phase field equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A nonstandard systems of differential equations describing two-species phase segregation is considered. This system naturally arises in the asymptotic analysis recently done by Colli, Gilardi, Krej¡cí, and Sprekels as the diffusion coefficient in the equation governing the evolution of the order parameter tends to zero. In particular, a well-posedness result is proved for the limit system. This paper deals with the above limit problem in a less general but still very significant framework and provides a very simple proof of further regularity for the solution. As a byproduct, a simple uniqueness proof is given as well.
  • Item
    An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Colli, Pierluigi; Gilardi, Gianni; Podio-Guidugli, Paola; Sprekels, Jürgen
    This paper is concerned with a diffusion model of phase-field type, consisting of a parabolic system of two partial differential equations, interpreted as balances of microforces and microenergy, for two unknowns: the problem's order parameter $rho$ and the chemical potential $mu$; each equation includes a viscosity term -- respectively, $varepsilon,partial_tmu$ and $delta,partial_trho$ -- with $varepsilon$ and $delta$ two positive parameters; the field equations are complemented by Neumann homogeneous boundary conditions and suitable initial conditions. In a recent paper [5], we proved that this problem is well-posed and investigated the long-time behavior of its $(varepsilon,delta)-$solutions. Here we discuss the asymptotic limit of the system as $eps$ tends to 0. We prove convergence of $(varepsilon,delta)-$solutions to the corresponding solutions for the case $eps$ =0, whose long-time behavior we characterize; in the proofs, we employ compactness and monotonicity arguments.
  • Item
    Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Colli, Pierluigi; Gilardi, Geanni; Podio-Guidugli, Paolo; Sprekels, Jürgen
    We study a diffusion model of phase field type, consisting of a system of two partial differential equations encoding the balances of microforces and microenergy; the two unknowns are the order parameter and the chemical potential. By a careful development of uniform estimates and the deduction of certain useful boundedness properties, we prove existence and uniqueness of a global-in-time smooth solution to the associated initial/boundary-value problem; moreover, we give a description of the relative $omega$-limit set.
  • Item
    Well-posedness and regularity for a fractional tumor growth model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study a system of three evolutionary operator equations involving fractional powers of selfadjoint, monotone, unbounded, linear operators having compact resolvents. This system constitutes a generalization of a phase field system of Cahn--Hilliard type modelling tumor growth that has been proposed in Hawkins-Daarud et al. (Int. J. Numer. Math. Biomed. Eng. 28 (2012), 3--24) and investigated in recent papers co-authored by the present authors and E. Rocca. The model consists of a Cahn--Hilliard equation for the tumor cell fraction φ, coupled to a reaction-diffusion equation for a function S representing the nutrient-rich extracellular water volume fraction. Effects due to fluid motion are neglected. The generalization investigated in this paper is motivated by the possibility that the diffusional regimes governing the evolution of the different constituents of the model may be of different (e.g., fractional) type. Under rather general assumptions, well-posedness and regularity results are shown. In particular, by writing the equation governing the evolution of the chemical potential in the form of a general variational inequality, also singular or nonsmooth constributions of logarithmic or of double obstacle type to the energy density can be admitted.
  • Item
    Optimal boundary control of a nonstandard Cahn-Hilliard system with dynamic boundary condition and double obstacle inclusions : dedicated to our friend Prof. Dr. Gianni Gilardi on the occasion of his 70th birthday
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Colli, Pierluigi; Sprekels, Jürgen
    In this paper, we study an optimal boundary control problem for a model for phase separation taking place in a spatial domain that was introduced by P. Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105–118. The model consists of a strongly coupled system of nonlinear parabolic differential inclusions, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically; the system is complemented by initial and boundary conditions. For the order parameter of the phase separation process, a dynamic boundary condition involving the Laplace–Beltrami operator is assumed, which models an additional nonconserving phase transition occurring on the surface of the domain. We complement in this paper results that were established in the recent contribution appeared in Evol. Equ. Control Theory 6 (2017), pp. 35–58, by the two authors and Gianni Gilardi. In contrast to that paper, in which differentiable potentials of logarithmic type were considered, we investigate here the (more difficult) case of nondifferentiable potentials of double obstacle type. For such nonlinearities, the standard techniques of optimal control theory to establish the existence of Lagrange multipliers for the state constraints are known to fail. To overcome these difficulties, we employ the following line of approach: we use the results contained in the preprint arXiv:1609.07046 [math.AP] (2016), pp. 1–30, for the case of (differentiable) logarithmic potentials and perform a so-called “deep quench limit”. Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (nondifferentiable) double obstacle potentials.