Search Results

Now showing 1 - 7 of 7
  • Item
    Characterization and effect of Ag(0) vs. Ag(I) species and their localized plasmon resonance on photochemically inactive TiO 2
    (Basel : MDPI, 2019) Handoko, Chanel Tri; Moustakas, Nikolaos G.; Peppel, Tim; Springer, Armin; Oropeza, Freddy E.; Huda, Adri; Bustan, Muhammad Djoni; Yudono, Bambang; Gulo, Fakhili; Strunk, Jennifer
    Commercial TiO 2 (anatase) was successfully modified with Ag nanoparticles at different nominal loadings (1%-4%) using a liquid impregnation method. The prepared materials retained the anatase structure and contained a mixture of Ag 0 and Ag I species. Samples exhibited extended light absorption to the visible region. The effect of Ag loading on TiO 2 is studied for the photocatalytic reduction of CO 2 to CH 4 in a gas-solid process under high-purity conditions. It is remarkable that the reference TiO 2 used in this work is entirely inactive in this reaction, but it allows for studying the effect of Ag on the photocatalytic process in more detail. Only in the case of 2% Ag/TiO 2 was the formation of CH 4 from CO 2 observed. Using different light sources, an influence of the localized surface plasmon resonance (LSPR) effect of Ag is verified. A sample in which all Ag has been reduced to the metallic state was less active than the respective sample containing both Ag 0 and Ag + , indicating that a mixed oxidation state is beneficial for photocatalytic performance. These results contribute to a better understanding of the effect of metal modification of TiO 2 in photocatalytic CO 2 reduction. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    In situ grown palladium nanoparticles on polyester fabric as easy-separable and recyclable catalyst for Suzuki-Miyaura reaction
    (Amsterdam : Elsevier, 2021) Xu, Tiefeng; Lu, Panting; Wohlrab, Sebastian; Chen, Wenxing; Springer, Armin; Wu, Xiao-Feng; Lu, Wangyang
    Palladium nanoparticles supported on low-melting polyester (Pd/LMPET) fabric were prepared through a microwave irradiation assisted method. In this way, in situ growth of Pd nanoparticles onto an easy to handle material was initiated and proceeded. The results of the characterization revealed that the palladium nanoparticles were well-dispersed on the surfaces of the polyester fibers. The Pd/LMPET fabrics were then employed in the Suzuki-Miyaura coupling. They exhibited excellent catalytic activity in ethanol/water under air atmosphere at 50 °C. Importantly, the Pd/LMPET fabrics could be separated from reaction mixture conveniently and they can still maintain good activity after 8 cycles without Pd leaching. © 2021 The Authors
  • Item
    Verification of impurity-related photocatalytic activity of insulating oxide supports
    (Amsterdam : Elsevier, 2021) Kortewille, Bianca; Springer, Armin; Strunk, Jennifer
    Photocatalysts composed of vanadium oxide species supported on commercial MgO and ZrO2 are investigated in selective methanol oxidation. Both support oxides are insulators, so the vanadium oxide species are expected as sole active component in photocatalysis. However, the pure supports showed considerable activity: Bare MgO was more active than MgO-supported vanadia catalysts, and ZrO2 showed intermediate activity. By various characterization methods, the presence of TiO2 (anatase) in the MgO support, and the presence of Zn, possibly as ZnO, in ZrO2 is demonstrated. The present study highlights that photocatalysts containing commercial supports must be carefully checked for impurity-related photocatalytic performance. © 2021 The Authors
  • Item
    A novel approach to fabricate load-bearing Ti6Al4V-Barium titanate piezoelectric bone scaffolds by coupling electron beam melting and field-assisted sintering
    (Amsterdam [u.a.] : Elsevier Science, 2022) Riaz, Abdullah; Polley, Christian; Lund, Henrik; Springer, Armin; Seitz, Hermann
    A critical-size bone defect in load-bearing areas is a challenging clinical problem in orthopaedic surgery. Titanium alloy (Ti6Al4V) scaffolds have advantages because of their biomechanical stability but lack electrical activity, which hinders their further use. This work is focused on the fabrication of Ti6Al4V-Barium Titanate (BaTiO3) bulk composite scaffolds to combine the biomechanical stability of Ti6Al4V with electrical activity through BaTiO3. For the first time, a hollow cylindrical Ti6Al4V is additively manufactured by electron beam melting and combined with piezoelectric BaTiO3 powder for joint processing in field-assisted sintering. Scanning electron microscope images on the interface of the Ti6Al4V-BaTiO3 composite scaffold showed that after sintering, the Ti6Al4V lattice structure bounded with BaTiO3 matrix without its major deformation. The Ti6Al4V-BaTiO3 scaffold had average piezoelectric constants of (0.63 ± 0.12) pC/N directly after sintering due to partial dipole alignment of the BaTiO3 tetragonal phase, which increased to (4.92 ± 0.75) pC/N after a successful corona poling. Moreover, the nanoindentation values of Ti6Al4V exhibited an average hardness and Young's modulus of (5.9 ± 0.9) GPa and (130 ± 14) GPa, and BaTiO3 showed (4.0 ± 0.6) GPa and (106 ± 10) GPa, respectively. It reveals that the Ti6Al4V is the harder and stiffer part in the Ti6Al4V-BaTiO3 composite scaffold. Such a scaffold has the potential to treat critical-size bone defects in load-bearing areas and guide tissue regeneration by physical stimulation.
  • Item
    Naturally drug-loaded chitin: Isolation and applications
    (Basel : MDPI, 2019) Kovalchuk, Valentine; Voronkina, Alona; Binnewerg, Björn; Schubert, Mario; Muzychka, Liubov; Wysokowski, Marcin; Tsurkan, Mikhail V.; Bechmann, Nicole; Petrenko, Iaroslav; Fursov, Andriy; Martinovic, Rajko; Ivanenko, Viatcheslav N.; Fromont, Jane; Smolii, Oleg B.; Joseph, Yvonne; Giovine, Marco; Erpenbeck, Dirk; Gelinsky, Michael; Springer, Armin; Guan, Kaomei; Bornstein, Stefan R.; Ehrlich, Hermann
    Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring (“ready-to-use”) chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay
  • Item
    Judging the feasibility of TiO2 as photocatalyst for chemical energy conversion by quantitative reactivity determinants
    (Cambridge : RSC Publ., 2019) Dilla, Martin; Moustakas, Nikolaos G.; Becerikli, Ahmet E.; Peppel, Tim; Springer, Armin; Schlögl, Robert; Strunk, Jennifer; Ristig, Simon
    In this study we assess the general applicability of the widely used P25-TiO2 in gas-phase photocatalytic CO2 reduction based on experimentally determined reactivity descriptors from classical heterogeneous catalysis (productivity) and photochemistry (apparent quantum yield/AQY). A comparison of the results with reports on the use of P25 for thermodynamically more feasible reactions and our own previous studies on P25-TiO2 as photocatalyst imply that the catalytic functionality of this material, rather than its properties as photoabsorber, limits its applicability in the heterogeneous photocatalytic CO2 reduction in the gas phase. The AQY of IrOx/TiO2 in overall water splitting in a similar high-purity gas-solid process was four times as high, but still far from commercial viability.
  • Item
    Coagulation using organic carbonates opens up a sustainable route towards regenerated cellulose films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Nguyen, Mai N.; Kragl, Udo; Barke, Ingo; Lange, Regina; Lund, Henrik; Frank, Marcus; Springer, Armin; Aladin, Victoria; Corzilius, Björn; Hollmann, Dirk
    Due to their biodegradability, biocompatibility and sustainable nature, regenerated cellulose (RC) films are of enormous relevance for green applications including medicinal, environmental and separation technologies. However, the processes used so far are very hazardous to the environment and health. Here, we disclose a simple, fast, environmentally friendly, nontoxic and cost-effective processing method for preparing RC films. High quality non-transparent and transparent RC films and powders can be produced by dissolution with tetrabutylphosphonium hydroxide [TBPH]/[TBP]+[OH]− followed by coagulation with organic carbonates. Investigations on the coagulation mechanism revealed an extremely fast reaction between the carbonates and the hydroxide ions. The high-quality powders and films were fully characterized with respect to structure, surface morphology, permeation and selectivity. This method represents a future-oriented green alternative to known industrial processes. © 2020, The Author(s).