Search Results

Now showing 1 - 3 of 3
  • Item
    In situ grown palladium nanoparticles on polyester fabric as easy-separable and recyclable catalyst for Suzuki-Miyaura reaction
    (Amsterdam : Elsevier, 2021) Xu, Tiefeng; Lu, Panting; Wohlrab, Sebastian; Chen, Wenxing; Springer, Armin; Wu, Xiao-Feng; Lu, Wangyang
    Palladium nanoparticles supported on low-melting polyester (Pd/LMPET) fabric were prepared through a microwave irradiation assisted method. In this way, in situ growth of Pd nanoparticles onto an easy to handle material was initiated and proceeded. The results of the characterization revealed that the palladium nanoparticles were well-dispersed on the surfaces of the polyester fibers. The Pd/LMPET fabrics were then employed in the Suzuki-Miyaura coupling. They exhibited excellent catalytic activity in ethanol/water under air atmosphere at 50 °C. Importantly, the Pd/LMPET fabrics could be separated from reaction mixture conveniently and they can still maintain good activity after 8 cycles without Pd leaching. © 2021 The Authors
  • Item
    Verification of impurity-related photocatalytic activity of insulating oxide supports
    (Amsterdam : Elsevier, 2021) Kortewille, Bianca; Springer, Armin; Strunk, Jennifer
    Photocatalysts composed of vanadium oxide species supported on commercial MgO and ZrO2 are investigated in selective methanol oxidation. Both support oxides are insulators, so the vanadium oxide species are expected as sole active component in photocatalysis. However, the pure supports showed considerable activity: Bare MgO was more active than MgO-supported vanadia catalysts, and ZrO2 showed intermediate activity. By various characterization methods, the presence of TiO2 (anatase) in the MgO support, and the presence of Zn, possibly as ZnO, in ZrO2 is demonstrated. The present study highlights that photocatalysts containing commercial supports must be carefully checked for impurity-related photocatalytic performance. © 2021 The Authors
  • Item
    Heat accumulation during femtosecond laser treatment at high repetition rate – A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V
    (Amsterdam : Elsevier, 2021) Schnell, Georg; Lund, Henrik; Bartling, Stephan; Polley, Christian; Riaz, Abdullah; Senz, Volkmar; Springer, Armin; Seitz, Hermann
    This study presents a detailed characterization of self-organized nano- and microstructures on Ti6Al4V evoked by different scanning strategies and fluences with a 300 fs laser operating at a laser wavelength of 1030 nm. The resulting surface morphology was visualized via field emission scanning electron microscopy (FEG-SEM) images of the surface and cross-sections. X-ray diffraction (XRD)-analysis was performed to analyse changes in crystal structures. The chemical surface composition of the near-surface layer was determined by X-ray photoelectron spectroscopy (XPS). Results show a significant influence of heat accumulation while processing with high laser repetition rates on the formation, crystallinity and chemical composition of self-organized structures depending on the scanning strategy. The ablation with different laser scanning strategies led to varying dynamics of growth-mechanisms of self-organized structures, formation of intermetallic phases (Ti3Al), sub-oxides and oxides (Ti6O, TiO) as well as ions (Ti3+, Ti4+) in surface layer reliant on applied fluence. Furthermore, investigations revealed a heat-affected zone up to several micrometers in non-ablated material. © 2021 The Authors