Search Results

Now showing 1 - 10 of 16
Loading...
Thumbnail Image
Item

The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation

2016, Engelmann, Ronny, Kanitz, Thomas, Baars, Holger, Heese, Birgit, Althausen, Dietrich, Skupin, Annett, Wandinger, Ulla, Komppula, Mika, Stachlewska, Iwona S., Amiridis, Vassilis, Marinou, Eleni, Mattis, Ina, Linné, Holger, Ansmann, Albert

The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.

Loading...
Thumbnail Image
Item

An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling

2016, Baars, Holger, Kanitz, Thomas, Engelmann, Ronny, Althausen, Dietrich, Heese, Birgit, Komppula, Mika, Preißler, Jana, Tesche, Matthias, Ansmann, Albert, Wandinger, Ulla, Lim, Jae-Hyun, Ahn, Joon Young, Stachlewska, Iwona S., Amiridis, Vassilis, Marinou, Eleni, Seifert, Patric, Hofer, Julian, Skupin, Annett, Schneider, Florian, Bohlmann, Stephanie, Foth, Andreas, Bley, Sebastian, Pfüller, Anne, Giannakaki, Eleni, Lihavainen, Heikki, Viisanen, Yrjö, Hooda, Rakesh Kumar, Pereira, Sérgio Nepomuceno, Bortol, Daniele, Wagner, Frank, Mattis, Ina, Janicka, Lucja, Markowicz, Krzysztof M., Achtert, Peggy, Artaxo, Paulo, Pauliquevis, Theotonio, Souza, Rodrigo A.F., Sharma, Ved Prakesh, van Zyl, Pieter Gideon, Beukes, Johan Paul, Sun, Junying, Rohwer, Erich G., Deng, Ruru, Mamouri, Rodanthi-Elisavet, Zamorano, Felix

A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

Loading...
Thumbnail Image
Item

Lidar derived properties of air-masses advected from Ukraine, Sahara and Carpathian mountains to Warsaw, Poland on 9 - 11 August 2015

2018, Janicka, Lucja, Szczepanik, Dominika, Borek, Karolina, Heese, Birgit, Stachlewska, Iwona S., Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

The aerosol layers of different origin, suspended in the atmosphere on 9-11 August 2015 were observed with the PollyXT-UW lidar in Warsaw, Poland. The HYSPLIT ensemble backward trajectories indicate that the observed air-masses attribute to a few different sources, among others, possible transport paths from Ukraine, Slovakia, and Africa. In this paper, we attempt to analyse and discuss the properties of aerosol particles of different origin that were suspended over Warsaw during this event.

Loading...
Thumbnail Image
Item

Effect of heatwave conditions on aerosol optical properties derived from satellite and ground-based remote sensing over Poland

2017, Stachlewska, Iwona S., Zawadzka, Olga, Engelmann, Ronny

During an exceptionally warm September in 2016, unique and stable weather conditions contributed to a heat wave over Poland, allowing for observations of aerosol optical properties, using a variety of ground-based and satellite remote sensors. The data set collected during 11–16 September 2016 was analysed in terms of aerosol transport (HYbrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)), aerosol load model simulations (Copernicus Atmosphere Monitoring Service (CAMS), Navy Aerosol Analysis and Prediction System (NAAPS), Global Environmental Multiscale-Air Quality (GEM-AQ), columnar aerosol load measured at ground level (Aerosol Robotic NETwork (AERONET), Polish Aerosol Research Network (PolandAOD)) and from satellites (Spinning Enhanced Visible and Infrared Imager (SEVIRI), Moderate Resolution Imaging Spectroradiometer (MODIS)), as well as with 24/7 PollyXT Raman Lidar observations at the European Aerosol Research Lidar Network (EARLINET) site in Warsaw. Analyses revealed a single day of a relatively clean background aerosol related to an Arctic air-mass inflow, surrounded by a few days with a well increased aerosol load of differing origin: pollution transported from Germany and biomass burning from Ukraine. Such conditions proved excellent to test developed-in-house algorithms designed for near real-time aerosol optical depth (AOD) derivation from the SEVIRI sensor. The SEVIRI AOD maps derived over the territory of Poland, with an exceptionally high resolution (every 15 min; 5.5 × 5.5 km2), revealed on an hourly scale, very low aerosol variability due to heat wave conditions. Comparisons of SEVIRI with NAAPS and CAMS AOD maps show strong qualitative similarities; however, NAAPS underestimates AOD and CAMS tends to underestimate it on relatively clean days (<0.2), and overestimate it for a high aerosol load (>0.4). A slight underestimation of the SEVIRI AOD is reported for pixel-to-column comparisons with AODs of several radiometers (AERONET, PolandAOD) and Lidar (EARLINET) with high correlation coefficients (r2 of 0.8–0.91) and low root-mean-square error (RMSE of 0.03–0.05). A heat wave driven increase of the boundary layer height of 10% is accompanied with the AOD increase of 8–12% for an urban site dominated by anthropogenic pollution. Contrary trend, with an AOD decrease of around 4% for a rural site dominated by a long-range transported biomass burning aerosol is reported. There is a positive feedback of heat wave conditions on local and transported pollution and an extenuating effect on transported biomass burning aerosol. The daytime mean SEVIRI PM2.5 converted from the SEVIRI AODs at a pixel representative for Warsaw is in agreement with the daily mean PM2.5 surface measurements, whereby SEVIRI PM2.5 and Lidar-derived Ångström exponent are anti-correlated.

Loading...
Thumbnail Image
Item

Study case of air-mass modification over Poland and Romania observed by the means of multiwavelength Raman depolarization lidars

2016, Costa-Surós, Montserrat, Janicka, Lucja, Stachlewska, Iwona S., Nemuc, Anca, Talianu, Camelia, Heese, Birgit, Engelmann, Ronny

An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

Loading...
Thumbnail Image
Item

Lidar Measurements of Canadian Forest Fire Smoke Episode Observed in July 2013 over Warsaw, Poland

2016, Janicka, Lucja, Stachlewska, Iwona S., Markowicz, Krzysztof M., Baars, Holger, Engelmann, Ronny, Heese, Birgit, Gross, Barry, Moshary, F., Arend, M.

This paper presents a preliminary study of aerosol optical properties of air-mass advected on 10th July 2013 from Canada above Warsaw, Poland, during the forest fire event that occurred in Quebec at the beginning of July 2013. The observations were conducted with use of the modern version of 8-channel PollyXT lidar capable of measuring at 3β+2α+2δ+VW and interpreted with available information from the MACC model, the CALIPSO and MODIS satellite sensors, the AERONET data products and the data gathered within the Poland-AOD network.

Loading...
Thumbnail Image
Item

The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET

2019, Baars, Holger, Ansmann, Albert, Ohneiser, Kevin, Haarig, Moritz, Engelmann, Ronny, Althausen, Dietrich, Hanssen, Ingrid, Gausa, Michael, Pietruczuk, Aleksander, Szkop, Artur, Stachlewska, Iwona S., Wang, Dongxiang, Reichardt, Jens, Skupin, Annett, Mattis, Ina, Trickl, Thomas, Vogelmann, Hannes, Navas-Guzmán, Francisco, Haefele, Alexander, Acheson, Karen, Ruth, Albert A., Tatarov, Boyan, Müller, Detlef, Hu, Qiaoyun, Podvin, Thierry, Goloub, Philippe, Veselovskii, Igor, Pietras, Christophe, Haeffelin, Martial, Fréville, Patrick, Sicard, Michaël, Comerón, Adolfo, García, Alfonso Javier Fernández, Molero Menéndez, Francisco, Córdoba-Jabonero, Carmen, Guerrero-Rascado, Juan Luis, Alados-Arboledas, Lucas, Bortoli, Daniele, Costa, Maria João, Dionisi, Davide, Liberti, Gian Luigi, Wang, Xuan, Sannino, Alessia, Papagiannopoulos, Nikolaos, Boselli, Antonella, Mona, Lucia, D’Amico, Guiseppe, Romano, Salvatore, Perrone, Maria Rita, Belegante, Livio, Nicolae, Doina, Grigorov, Ivan, Gialitaki, Anna, Amiridis, Vassilis, Soupiona, Ourania, Papayannis, Alexandros, Mamouri, Rodanthi-Elisaveth, Nisantzi, Argyro, Heese, Birgit, Hofer, Julian, Schechner, Yoav Y., Wandinger, Ulla, Pappalardo, Gelsomina

Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm−1 until the beginning of September and on the order of 1 Mm−1 (0.5–5 Mm−1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µg m−3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L−1 until the first days in September and afterwards 5–50 L−1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of −55 ∘C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and < 0.05 (December–January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32–35∘ N, that ascended from heights of about 18–19 to 22–23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.

Loading...
Thumbnail Image
Item

Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen

2018, Stachlewska, Iwona S., Ritter, Christoph, Böckmann, Christine, Engelmann, Ronny, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Arctic Haze event was observed on 5-8 April 2015 using simultaneously Near-range Aerosol Raman Lidar of IGFUW and Koldewey Aerosol Raman Lidar of AWI, both based at AWIPEV German-French station in Ny-Ålesund, Spitsbergen. The alterations in particle abundance and altitude of the aerosol load observed on following days of the event is analyzed. The daytime profiles of particle optical properties were obtained for both lidars, and then served as input for microphysical parameters inversion. The results indicate aerosol composition typical for the Arctic Haze. However, in some layers, a likely abundance of aqueous aerosol or black carbon originating in biomass burning over Siberia, changes measurably the Arctic Haze properties.

Loading...
Thumbnail Image
Item

Near-range receiver unit of next generation PollyXT used with Koldeway aerosol Raman lidar in Arctic

2016, Stachlewska, Iwona S., Markowicz, Krzysztof M., Ritter, Christoph, Roland Neuber, Roland, Heese, Birgit, Engelmann, Ronny, Linne, Holger

The Near-range Aerosol Raman lidar (NARLa) receiver unit, that was designed to enhance the detection range of the NeXT generation PollyXT Aerosol-Depolarization-Raman (ADR) lidar of the University of Warsaw, was employed next the Koldeway Aerosol Raman Lidar (KARL) at the AWI-IPEV German-French station in Arctic during Spring 2015. Here we introduce shortly design of both lidars, the scheme of their installation next to each other, and preliminary results of observations aiming at arctic haze investigation by the lidars and the iCAP a set of particle counter and aethalometer installed under a tethered balloon.

Loading...
Thumbnail Image
Item

Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations

2017, Ortiz-Amezcua, Pablo, Guerrero-Rascado, Juan Luis, Granados-Muñoz, María José, Benavent-Oltra, José Antonio, Böckmann, Christine, Samaras, Stefanos, Stachlewska, Iwona S., Janicka, Łucja, Baars, Holger, Bohlmann, Stephanie, Alados-Arboledas, Lucas

Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30 % of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: Color ratio of lidar ratios (LR532/LR355) around 2, α-related ängström exponents of less than 1, effective radii of 0.3 μm and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.