Search Results

Now showing 1 - 3 of 3
  • Item
    Modular coherent photonic-aided payload receiver for communications satellites
    ([London] : Nature Publishing Group UK, 2019) Duarte, Vanessa C.; Prata, João G.; Ribeiro, Carlos F.; Nogueira, Rogério N.; Winzer, Georg; Zimmermann, Lars; Walker, Rob; Clements, Stephen; Filipowicz, Marta; Napierała, Marek; Nasiłowski, Tomasz; Crabb, Jonathan; Kechagias, Marios; Stampoulidis, Leontios; Anzalchi, Javad; Drummond, Miguel V.
    Ubiquitous satellite communications are in a leading position for bridging the digital divide. Fulfilling such a mission will require satellite services on par with fibre services, both in bandwidth and cost. Achieving such a performance requires a new generation of communications payloads powered by large-scale processors, enabling a dynamic allocation of hundreds of beams with a total capacity beyond 1 Tbit s−1. The fact that the scale of the processor is proportional to the wavelength of its signals has made photonics a key technology for its implementation. However, one last challenge hinders the introduction of photonics: while large-scale processors demand a modular implementation, coherency among signals must be preserved using simple methods. Here, we demonstrate a coherent photonic-aided receiver meeting such demands. This work shows that a modular and coherent photonic-aided payload is feasible, making way to an extensive introduction of photonics in next generation communications satellites.
  • Item
    A 112 Gb/s Radiation-Hardened Mid-Board Optical Transceiver in 130-nm SiGe BiCMOS for Intra-Satellite Links
    (Lausanne : Frontiers Media, 2021) Giannakopoulos, Stavros; Sourikopoulos, Ilias; Stampoulidis, Leontios; Ostrovskyy, Pylyp; Teply, Florian; Tittelbach-Helmrich, K.; Panic, Goran; Fischer, Gunter; Grabowski, Alexander; Zirath, Herbert; Ayzac, Philippe; Venet, Norbert; Maho, Anaëlle; Sotom, Michel; Jones, Shaun; Wood, Grahame; Oxtoby, Ian
    We report the design of a 112 Gb/s radiation-hardened (RH) optical transceiver applicable to intra-satellite optical interconnects. The transceiver chipset comprises a vertical-cavity surface-emitting laser (VCSEL) driver and transimpedance amplifier (TIA) integrated circuits (ICs) with four channels per die, which are adapted for a flip-chip assembly into a mid-board optics (MBO) optical transceiver module. The ICs are designed in the IHP 130 nm SiGe BiCMOS process (SG13RH) leveraging proven robustness in radiation environments and high-speed performance featuring bipolar transistors (HBTs) with fT/fMAX values of up to 250/340 GHz. Besides hardening by technology, radiation-hardened-by-design (RHBD) components are used, including enclosed layout transistors (ELTs) and digital logic cells. We report design features of the ICs and the module, and provide performance data from post-layout simulations. We present radiation evaluation data on analog devices and digital cells, which indicate that the transceiver ICs will reliably operate at typical total ionizing dose (TID) levels and single event latch-up thresholds found in geostationary satellites.
  • Item
    Dimensioning of a multibeam coherent photonic beamformer fed by a phased array antenna
    (Washington, DC : Optical Society of America, OSA, 2018) Drummond, Miguel V.; Duarte, Vanessa C.; Albuquerque, André; Nogueira, Rogério N.; Stampoulidis, Leontios; Winzer, Georg; Zimmermann, Lars; Clements, Stephen; Anzalchi, Javad
    The design and dimensioning of a photonic-aided payload for a multi-beam high-throughput communications satellite is a complex problem in which the antenna, RF and photonic subsystems must be considered as a whole for achieving best performance with lowest mass and power consumption. In this paper, we propose and dimension the receiving stage of a communications satellite comprising a phased array antenna (PAA) feeding a multibeam photonic beamforming system (PBS). The PBS uses a single wavelength and resorts to heterodyne detection such that the retrieved beams are frequency downconverted. End-to-end system modeling shows that the complexity of the PAA and PBS can be traded-o for signal-to-noise ratio (SNR) or power consumption without compromising the beam width. The dimensioning of a realistic scenario is presented, showing that an SNR and beam crosstalk on the order of 20 dB are achievable with a total power consumption below 1 kW for a typical number of 100 antenna elements (AEs).