Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS)

2017, Sobierajska, Ewelina, Konopka, Malgorzata, Janaszewska, Anna, Piorecka, Kinga, Blauz, Andrzej, Klajnert-Maculewicz, Barbara, Stanczyk, Maciej, Stanczyk, Wlodzimierz A.

Polyhedral oligomeric silsesquioxane (POSS), bearing eight 3-chloroammoniumpropyl substituents, was studied as a potential nanocarrier in co-delivery systems with doxorubicin (DOX). The toxicity of doxorubicin and POSS:DOX complexes at four different molar ratios (1:1; 1:2, 1:4, 1:8) towards microvascular endothelial cells (HMEC-1), breast cancer cells (MCF-7), and human cervical cancer endothelial cells (HeLa) was determined. The rate of penetration of the components into the cells, their cellular localization and the hydrodynamic diameter of the complexes was also determined. A cytotoxicity profile of POSS:DOX complexes indicated that the POSS:DOX system at the molar ratio of 1:8 was more effective than free DOX. Confocal images showed that DOX co-delivery with POSS allowed for more effective penetration of doxorubicin through the cell membrane. Taking all the results into account, it can be claimed that the polyhedral oligomeric silsesquioxane (T8-POSS) is a promising, complex nanocarrier for doxorubicin delivery.

Loading...
Thumbnail Image
Item

Molecular mechanisms of antitumor activity of PAMAM dendrimer conjugates with anticancer drugs and a monoclonal antibody

2019, Marcinkowska, Monika, Stanczyk, Maciej, Janaszewska, Anna, Gajek, Arkadiusz, Ksiezak, Malgorzata, Dzialak, Paula, Klajnert-Maculewicz, Barbara

Taxanes are considered fundamental drugs in the treatment of breast cancer, but despite the similarities, docetaxel (doc) and paclitaxel (ptx) work differently. For this reason, it is interesting to identify mechanisms of antitumor activity of PAMAM dendrimer conjugates that carry docetaxel or paclitaxel and monoclonal antibody trastuzumab, specifically targeted to cells which overexpressed HER-2. For this purpose, the impact on the level of reactive oxygen species, the mitochondrial membrane potential, cell cycle distribution and the activity of caspases-3/7, -8 and -9 of PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates was determined and compared with free docetaxel and paclitaxel toward HER-2-positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines. Moreover, apoptosis and necrosis were studied using flow cytometry and confocal microscopy, respectively. Our studies show the complexity of the potential mechanism of cytotoxic action of PAMAM-drug-trastuzumab conjugates that should be sought as a resultant of oxidative stress, mitochondrial activation of the caspase cascade and the HER-2 receptor blockade.

Loading...
Thumbnail Image
Item

Multicomponent Conjugates of Anticancer Drugs and Monoclonal Antibody with PAMAM Dendrimers to Increase Efficacy of HER-2 Positive Breast Cancer Therapy

2019, Marcinkowska, Monika, Stanczyk, Maciej, Janaszewska, Anna, Sobierajska, Ewelina, Chworos, Arkadiusz, Klajnert-Maculewicz, Barbara

Purpose: Conjugation of nanocarriers with antibodies that bind to specific membrane receptors that are overexpressed in cancer cells enables targeted delivery. In the present study, we developed and synthesised two PAMAM dendrimer-trastuzumab conjugates that carried docetaxel or paclitaxel, specifically targeted to cells which overexpressed HER-2. Methods: The 1H NMR, 13C NMR, FTIR and RP-HPLC were used to analyse the characteristics of the products and assess their purity. The toxicity of PAMAM-trastuzumab, PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates was determined using MTT assay and compared with free trastuzumab, docetaxel and paclitaxel toward HER-2-positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines. The cellular uptake and internal localisation were studied using flow cytometry and confocal microscopy, respectively. Results: The PAMAM-drug-trastuzumab conjugates in particular showed extremely high toxicity toward the HER-2-positive SKBR-3 cells and very low toxicity towards to HER-2-negative MCF-7 cells. As expected, the HER-2-positive SKBR-3 cell line accumulated trastuzumab from both conjugates rapidly; but surprisingly, although a large amount of PAMAM-ptx-trastuzumab conjugate was observed in the HER-2-negative MCF-7 cells. Confocal microscopy confirmed the intracellular localisation of analysed compounds. The key result of fluorescent imaging was the identification of strong selective binding of the PAMAM-doc-trastuzumab conjugate with HER-2-positive SKBR-3 cells only. Conclusions: Our results confirm the high selectivity of PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates for HER-2-positive cells, and demonstrate the utility of trastuzumab as a targeting agent. Therefore, the analysed conjugates present an promising approach for the improvement of efficacy of targeted delivery of anticancer drugs such as docetaxel or paclitaxel. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Conjugate of PAMAM Dendrimer, Doxorubicin and Monoclonal Antibody—Trastuzumab: The New Approach of a Well-Known Strategy

2018, Marcinkowska, Monika, Sobierajska, Ewelina, Stanczyk, Maciej, Janaszewska, Anna, Chworos, Arkadiusz, Klajnert-Maculewicz, Barbara

The strategy utilizing trastuzumab, a humanized monoclonal antibody against human epidermal growth receptor 2 (HER-2), as a therapeutic agent in HER-2 positive breast cancer therapy seems to have advantage over traditional chemotherapy, especially when given in combination with anticancer drugs. However, the effectiveness of single antibody or antibody conjugated with chemotherapeutics is still far from ideal. Antibody–dendrimer conjugates hold the potential to improve the targeting and release of active substance at the tumor site. In the present study, we developed and synthesized PAMAM dendrimer–trastuzumab conjugates carrying doxorubicin (dox) specifically to cells overexpressing HER-2. 1HNMR, FTIR and RP-HPLC were used to characterize the products and analyze their purity. Toxicity of PAMAM–trastuzumab and PAMAM–dox–trastuzumab conjugates compared with free trastuzumab and doxorubicin towards HER-2 positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines was determined using MTT assay. Furthermore, the cellular uptake and cellular localization were studied by flow cytometry and confocal microscopy, respectively. A cytotoxicity profile of above mentioned compounds indicated that conjugate PAMAM–dox–trastuzumab was more effective when compared to free drug or the conjugate PAMAM–trastuzumab. Moreover, these results reveal that trastuzumab can be used as a targeting agent in PAMAM–dox–trastuzumab conjugate. Therefore PAMAM–dox–trastuzumab conjugate might be an interesting proposition which could lead to improvements in the effectiveness of drug delivery systems for tumors that overexpress HER-2.